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Abstract. Among many other difficulties of imbalanced classification,
evaluation of classifiers is rarely trivial. Fβ-score is often recommended
as one of the go-to evaluation measures in imbalanced classification, but
researchers have voiced their concerns on whether Fβ-score in fact is an
appropriate measure. In this paper, we introduce a framework of cost-
consistency, i.e., whether an evaluation measure is consistent with total
classification cost at least for some cost and class imbalance ratio, and
show that, with a simple cost structure, Fβ-score is not cost-consistent.

1 Introduction

In real-life classification tasks, class and classification cost distributions are rarely
balanced – known as the problem of imbalanced data. It is not only learning from
imbalanced data that is challenging, but even just evaluating different classifiers
on an imbalanced classification task is not trivial. It is well known that accuracy
is not an appropriate evaluation measure for imbalanced classification [1], but
choosing the most suitable measure is far from easy.

The motivation for this work is that, although conventional evaluation mea-
sures are usually defined independent of classification costs, that does not change
the fact that in real-life classification tasks there are factual costs – even if they
would be (partly) unknown. Thus, it is important to understand how the applied
measures behave in relation to total classification cost.

The rest of the paper is organized as follows. In Section 2, we discuss total
cost and some conventional evaluation measures. In Section 3, we introduce a
framework of cost-consistency, i.e., whether an evaluation measure is consistent
with total cost, and evaluate two measures, Fβ-score and informedness, under
this framework. Finally, Section 4 concludes the work.

2 Evaluation and total cost of imbalanced classification

In this paper, we focus on binary classification. The performance of a binary
classifier on a data sample can be summarized by a confusion matrix as shown
in Table 1, where tp is the number of true positives, fp the number of false
positives, fn the number of false negatives, tn the number of true negatives, and
N is the total number of observations in the sample. On the marginals, pp =
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tp + fp and pn = tn + fn are the number of predicted positives and negatives,
respectively, and ap = tp + fn and an = tn + fp are the number of actual
positives and negatives in the sample, respectively.

Table 1: Binary confusion matrix.
Actual: P N

Predicted:
P tp fp pp
N fn tn pn

ap an N

In imbalanced classification, the so-called minority class is commonly denoted
as the positive class, i.e., ap < an (or even ap ≪ an). Moreover, the cost of mis-
classifying a positive observation negative, CFN, is typically (much) higher than
the cost of misclassifying a negative observation positive, CFP. A common issue
with imbalanced data is that standard classifiers tend to learn a classification
rule with a trivially high accuracy while neglecting the positive class [1].

If the costs are explicitly known, total cost is a rational choice for an evalua-
tion measure. However, in practice, costs are rarely (fully) known and challeng-
ing to estimate and can also be observation-dependent or nonlinear [2]. Assuming
a simple (i.e., observation-independent and linear) cost structure, any reasonable
cost system [CFN, CFP, CTP < CFN, CTN < CFP] (see, [3]) can be expressed as a
scaled total cost c× fn + fp, where c = CFN−CTP

CFP−CTN
.

It is easy to show that the actual total cost can be replaced with this sim-
pler scaled cost in evaluation as long as the data sample is fixed for all the
evaluated classifiers. Elkan (2001) showed that any reasonable cost system can
be transformed into [C ′

FN = CFN−CTN

CFP−CTN
, C ′

FP = 1, C ′
TP = CTP−CTN

CFP−CTN
, C ′

TN = 0].
The simple scaled cost we defined is actually the difference between this trans-
formed total cost and the transformed total cost of a perfect classification,
C ′

TPap + C ′
TNan = C ′

TPap = C ′
TP(tp + fn), for a given sample:

C ′
FNfn + C ′

TPtp + 1× fp + 0× tn− C ′
TP(tp + fn) = (C ′

FN − C ′
TP)fn + fp

=
(
CFN−CTN

CFP−CTN
− CTP−CTN

CFP−CTN

)
fn + fp = CFN−CTP

CFP−CTN
fn + fp = c× fn + fp,

which is a strictly increasing function of total cost (given a fixed sample).
In practice, confusion matrices are often compressed into cost-independent

univariate evaluation measures. These include, for instance, true positive rate
(tpr, also known as recall) tp

ap , true negative rate (tnr) tn
an , and precision tp

pp .

On their own, however, these measures are one-sided, as perfect tpr (or tnr)
can be obtained trivially by classifying every observation positive (or negative).
While perfect precision cannot be achieved trivially, generally the case is that
the less observations are classified positive, the higher the value of precision. In
order to consider these trade-offs, many commonly applied evaluation measures
are defined as combinations of the ones discussed above. Two such measures,
Fβ-score and informedness, are considered in the following section.
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3 Cost-consistency of Fβ-score and informedness

Fβ-score (or sometimes just F-score or F-measure) has its origins in information
retrieval but has since become highly popular in machine learning as well and is
often recommended as the go-to evaluation measure in imbalanced classification
(typically, with β ∈ { 1

2 , 1, 2}). Fβ-score is defined as a β-weighted harmonic
mean of precision and recall:

Fβ = (1 + β2)
precision× recall

(β2 × precision) + recall
=

(1 + β2)tp

(1 + β2)tp + β2fn + fp
.

However, studies have questioned Fβ-score’s position as one of the conven-
tional evaluation measures in (imbalanced) classification due to, for instance, its
inability to consider true negatives [4, 5, 6]. Another notable issue with Fβ-score
is that, although it is defined as a harmonic mean, it can actually be reduced into
a weighted arithmetic mean of recall and precision, where the relative weight of
recall and precision depend on the number of predicted positives, pp [4, 6]. The
problem is that pp depends on the classifier itself, i.e., the thing that is supposed
to be evaluated [4, 6]. The arithmetic mean reformulation [4, 6] is

Fβ = pβ × recall + (1− pβ)× precision, where

{
pβ = β2ap

β2ap+pp

1− pβ = pp
β2ap+pp

,

and the relative weight of recall compared to precision is
pβ

1−pβ
= β2 ap

pp .

Assuming a simple cost structure as discussed in Section 2, (scaled) total cost
is given as c× fn+ fp. That is, for a change ∆fn = -1, a cost-invariant change in
a confusion matrix is ∆fp = c, and, consequently, ∆tp = 1 and ∆tn = −c. We
call an evaluation measure cost-consistent if the value of the measure increases
if and only if total cost decreases. A necessary condition for cost-consistency
is that, for any cost-invariant change in a confusion matrix, the value of the
evaluation measure must also remain unchanged.

Informedness (see, e.g., [5]), which is defined as tpr + tnr - 1, is cost-consistent
in a certain situation. A cost-invariant change induces a change of the order of
1
ap in tpr and a change of the order of − c

an in tnr. These changes cancel each
other out if c = an

ap . That is, if the cost ratio matches the class imbalance ratio
an
ap , informedness is cost-consistent1 (as, in this case, the evaluation measure also

necessarily increases if total cost decreases).
On the other hand, there does not exist any scenario (i.e., a cost ratio, a class

imbalance ratio, and/or a value of β) in which Fβ-score would be cost-consistent.
Given a cost-invariant change in a confusion matrix for a unit change in tp, that
is, ∆tp = -∆fn = 1 and ∆tn = -∆fp = −c, we can solve the value of β that
corresponds to ∆Fβ-score = 0 using the arithmetic mean reformulation of Fβ

1Note that there exists also a measure called balanced accuracy to which the same result
applies. Balanced accuracy is defined as 1

2
(tpr + tnr). It is essentially the same measure as

informedness – just scaled linearly to a range from 0 to 1.
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[4, 6]. The changes in recall ∆R, precision ∆P, and weight of recall ∆pβ are

∆R =
tp + 1

ap
− tp

ap
=

1

ap
, ∆P =

tp + 1

pp + c+ 1
− tp

pp
=

pp− (c+ 1)tp

pp(pp + c+ 1)
,

∆pβ =
β2ap

β2ap + pp + c+ 1
− β2ap

β2ap + pp
=

−β2ap(c+ 1)

(β2ap + pp)(β2ap + pp + c+ 1)
,

and the change in the weight of precision is simply ∆(1 − pβ) = −∆pβ . The
cost-invariant change in Fβ-score is

∆Fβ =∆
(
pβR

)
+∆

(
(1− pβ)P

)
=∆pβR+ pβ∆R+∆pβ∆R+∆(1− pβ)P + (1− pβ)∆P +∆(1− pβ)∆P

=∆pβ
(
(R +∆R)− (P +∆P)

)
+ pβ(∆R−∆P) +∆P

=∆pβ
(
(R +∆R)− (P +∆P)

)
+ pβ

(
∆R− (1− 1

pβ
)∆P

)
.

From the equations of ∆R, ∆P, and ∆pβ , we know that

R +∆R =
tp + 1

ap
, P +∆P =

tp + 1

pp + c+ 1
,

(1− 1
pβ

)∆P =

(
1− β2ap + pp

β2ap

)
pp− (c+ 1)tp

pp(pp + c+ 1)
= − pp− (c+ 1)tp

β2ap(pp + c+ 1)
,

and combining these, ∆Fβ can be written as

∆Fβ =
−β2ap(c+ 1)

(β2ap + pp)(β2ap + pp + c+ 1)

(
tp + 1

ap
− tp + 1

pp + c+ 1

)
+

β2ap

β2ap + pp

(
1

ap
+

pp− (c+ 1)tp

β2ap(pp + c+ 1)

)
.

Setting ∆Fβ = 0 and solving for β2 gives

β2 =

{
−1
(c+1)tp−pp

ap

.

As β is a (positive) real number, and as pp = tp + fp, the only solution is

β =

√
(c+ 1)tp− pp

ap
=

√
ctp + tp− tp− fp

ap
=

√
ctp− fp

ap
.

Now, for a total cost C∗ = cfn+fp, it holds that fp = C∗−cfn = C∗−c(ap−tp).
Based on this, the solution of β can be written as

β =

√
ctp− C∗ + cap− ctp

ap
=

√
c− C∗

ap
.
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That is, the solution of β depends on total cost itself, and thus, irrespective of
cost and class imbalance ratios, there does not exist any β for which Fβ-score
would be cost-consistent (given the assumed simple cost-structure).

Cost-invariant curves of Fβ-score and informedness are illustrated in Figures
1 and 2. The illustrations were generated by decreasing tp (from tpr = 1) step
by step and solving the rest of the cost-invariant confusion matrix each step for
a given total cost, with ap = 100, an = 2,000, and c = an

ap = 20. Total cost of

a curve (ranging from 0 to 2,000 = c× ap = an) is presented on the right-hand
side. Figure 1 shows cost-invariant Fβ-score curves2 with two commonly used
values, β = 1 and β = 2, and Figure 2 shows cost-invariant informedness curves
with c = an

ap and with an increase of 10% to the cost ratio.
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Fig. 1: Cost-invariant curves of Fβ-score with β = 1 and β = 2. Total costs
corresponding to constant Fβ-scores, C

∗ = (c− β2)ap, are bolded.
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Fig. 2: Cost-invariant curves of informedness with two different cost ratios.
Informedness is cost-consistent when c = an

ap .

2Note that, although precision is not defined if pp = 0, Fβ-score is set to zero if pp = 0.
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In Figure 1, the total costs corresponding to constant Fβ-scores are high-
lighted with bolded lines. If total cost is less than that line, Fβ-score has a bias
towards too low tpr (and a bias towards too high tpr, if total cost is higher). On
the other hand, as shown in Figure 2, even if the true cost ratio slightly differs
from the class imbalance ratio, a similar bias in informedness is not as severe.
However, the bias in informedness naturally increases the further away the true
cost ratio is from the class imbalance ratio.

4 Discussion and conclusion

Total cost would be an appropriate evaluation measure for imbalanced classi-
fication, but exact costs are rarely available and estimating them is difficult.
However, it would still make sense to apply an evaluation measure that is cost-
consistent at least in a certain scenario, for example, informedness (or balanced
accuracy) – even if that would implicitly assume a simple cost-structure. An-
other option would be to estimate the cost function and to use total cost as an
evaluation measure. In practice, however, choosing a cost function may seem ar-
bitrary. Yet, not setting a cost function and, instead, using heuristic evaluation
measures can be seen as an arbitrary choice as well.

In real-life classification tasks, the aim of evaluation is simply to find the
best classifier for the given application, and, consequently, the applied evalua-
tion measure(s) can be anything that the practitioners see apt for the task –
though, it would still be important that the practitioners understand how the
measures behave, as using suboptimal evaluation measures may lead to subop-
timal decisions. On the other hand, e.g., in method comparisons carried out by
researchers, choosing an unconventional evaluation measure can be seen to com-
promise the integrity of obtained conclusions. Thus, research aiming to establish
appropriate measures in imbalanced classification is of high importance.

References

[1] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on Knowledge
and Data Engineering, 21(9):1263–1284, 2009.

[2] B. Zadrozny and C. Elkan. Learning and making decisions when costs and probabilities are
both unknown. In Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 204–213, 2001.

[3] C. Elkan. The foundations of cost-sensitive learning. In Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence, pages 973–978, 2001.

[4] D. Hand and P. Christen. A note on using the F-measure for evaluating record linkage
algorithms. Statistics and Computing, 28:539–547, 2018.

[5] D. M. W. Powers. Evaluation: from precision, recall and F-measure to ROC, informedness,
markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.

[6] P. Christen, D. Hand, and N. Kirielle. A review of the F-measure: Its history, properties,
criticism, and alternatives. ACM Comput. Surv., 56(3), 2023.

250

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  


	PapersAndBack
	AllPapers
	Wednesday
	ES2024-186-3






