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Abstract. Lateral movement is a crucial phase of advanced cyberat-
tacks, during which attackers propagate from host to host within the tar-
geted network. State-of-the-art methods for detecting this behavior rely
on graph-based learning algorithms, which typically leverage node embed-
dings to detect anomalous edges between hosts. Once trained, such models
cannot easily generalize to new hosts joining the network or to a different
network, which is impractical in real-world applications. We investigate
the detection performance of an inductive link prediction model, which can
generalize to graphs not seen during training, and find that it performs as
well as state-of-the-art transductive methods in a zero-shot setting. This
opens promising perspectives for practical lateral movement detection.

1 Introduction

The most valuable assets within enterprise computer networks are usually not
the most readily accessible to malicious intruders. As a consequence, advanced
cyberattacks often comprise a lateral movement phase, during which the attacker
initiates remote connections from already compromised hosts to more interesting
ones. The standard approach to detecting such behavior represents internal
traffic within an enterprise network as a graph whose nodes are the hosts. Lateral
movement generates new edges in this graph, which are assumed to be anomalous
with respect to benign edges. Therefore, a link prediction model can be used to
distinguish legitimate new connections (which are well predicted by the model)
from malicious ones. The models used in the cybersecurity literature typically
learn parameters specific to each computer network, such as node embeddings
summarizing hosts’ behavior [1, 2, 3, 4, 5, 6]. As a consequence, a model trained
on one enterprise network cannot easily be deployed in another one, and it
must be retrained periodically to accomodate both the introduction of new hosts
within the network and distribution shifts in the behavior of existing hosts.

Recent advances in inductive link prediction might help alleviate these lim-
itations. Indeed, the advent of inductive graph neural networks (GNNs) has
opened the possibility of training a model on one graph and using it for zero-shot
prediction on another [7]. This approach was recently extended to knowledge
graphs with the introduction of Ultra [8], a fully inductive GNN designed for
knowledge graph completion. As described in Section 2, such models can be
repurposed as lateral movement detectors. However, it remains unclear whether
Ultra is fit for the specific, challenging task of detecting lateral movement. We
thus study its performance on two benchmark datasets in Section 3, and find
that Ultra performs comparably to state-of-the-art transductive methods.
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2 Using Inductive GNNs for Lateral Movement Detection

Let G = (V, E ,R) be a knowledge graph, where V, E and R denote the node set,
the edge set and the set of edge types (or relations), respectively. Here, the graph
G represents the traffic observed within a computer network during a reference
period: the nodes are hosts, the edges represent directed communication between
these hosts, and the relations correspond to different types of communication
(e.g., different protocols and ports). Given the reference graph G and a set of
K new edges {(sk, rk, dk) /∈ E}Kk=1, where sk (resp. dk, rk) is the source (resp.
destination, type) of the k-th edge, lateral movement detection consists in sorting
these edges from most to least suspicious.

An inductive link predictor such as Ultra can be described as a function
f : (s, r, d;G) 7→ h ∈ R, which computes a score h indicating how likely a new
edge (s, r, d) ∈ V × R × V is given the graph G. We build a lateral movement
detector using this function as follows. In accordance with the methodology used
for training Ultra [8], we first add reciprocal edges to the original graph: for
each edge (s, r, d) ∈ E , we create an additional edge (d, r−1, s), where r−1 is the
reciprocal of relation r. Given the context graph G and a new edge (s, r, d), we
then define the anomaly score of the new edge as

z(s, r, d;G) =
1

2

(
exp

(
f(s, r, d;G)

)∑
d′∈V exp

(
f(s, r, d′;G)

) +
exp

(
f(d, r−1, s;G)

)∑
s′∈V exp

(
f(d, r−1, s′;G)

)) .

This anomaly score can be intuitively understood as the average of two con-
ditional probabilities, namely the probability p(d|s, r,G) of the destination be-
ing d and the probability p(s|d, r,G) of the source being s. One or both of
these probabilities being low means that the underlying traffic is inconsistent
with the patterns found within the reference graph G, and thus more suspicious
from an intrusion detection perspective. Finally, we sort the set of new edges
{(sk, rk, dk)}Kk=1 in ascending order of their anomaly scores.

Research questions. We aim to investigate the overall performance of this de-
tection methodology, as well as the influence of several factors. First, we seek to
determine on which datasets the model should be trained (Q1). Specifi-
cally, the authors of Ultra pre-trained several models on different sets of openly
accessible knowledge graphs from various domains. Given the peculiarities of
cybersecurity-related data, a reasonable question is whether these pre-trained
models perform better than models trained on host communication graphs. Sec-
ondly, we investigate how adaptable models trained on cybersecurity-
related data are (Q2). In other words, how well does a model trained on
data collected within one computer network detect lateral movement in another
network? Finally, an important aspect of network security monitoring is that it
relies on many different data sources: in addition to traffic between hosts, secu-
rity analysts typically collect other types of interactions, such as users logging
on to hosts. Therefore, a relevant question is whether including additional
interactions in the context graph G improves detection performance (Q3).
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Fig. 1: Knowledge graph representations of the two datasets. The basic rep-
resentation contains only the black elements, while the enriched representation
also comprises the blue elements. AP and LT stand for authentication package
and logon type, respectively.

3 Experiments and Results

We address the research questions exposed in the previous section through sev-
eral experiments, which are described in Section 3.1. Our results are presented
and discussed in Section 3.2. The code, data and configurations (including hy-
perparameters) used in our experiments are openly accessible1.

3.1 Datasets and Models

Datasets. We use two datasets in our experiments. The first one is the ”Com-
prehensive, Multi-Source Cyber-Security Events” dataset released by the Los
Alamos National Laboratory (LANL dataset [9]). It consists of authentication
logs collected over 58 days in a real-world enterprise network, with labeled edges
corresponding to lateral movement carried out during a red team exercise. The
context graph G is built using the 40 days of data without red team activity,
and the rest of the data makes up the test set. The second dataset is the Oper-
ationally Transparent Cyber dataset released by DARPA (OpTC dataset). It
contains host audit logs from a simulated enterprise network collected over nine
days, with several attack scenarios including lateral movement. We build the
context graph over the first six days and use the last three days for evaluation.
For both datasets, we build two versions of the context graph G (see Figure 1).
The basic representation contains only host-host edges: remote authentications
for the LANL dataset, and flow start events for the OpTC dataset. In the en-
riched representation, we add user-related information from the authentication
logs. Note that only new host-host edges are included in the test set.

Experiments. We perform three kinds of experiments: zero-shot lateral move-
ment detection with the pre-trained models (Ultra3g, Ultra4g, and Ul-
tra50g), fine-tuning of these models on the considered datasets and training
of new Ultra models from scratch. The models trained from scratch have

1https://github.com/cl-anssi/UltraLMD
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Basic representation Rich representation
Model AUC AP AUC AP
Ultra3g 88.4 2.2 90.8 5.7

Fine-tuned on LANL 89.9±1.8 11.6±6.3 81.6±1.7 1.5±0.2
Fine-tuned on OpTC 87.9±3.7 11.8±6.6 94.1±2.4 12.3±3.9

Ultra4g 98.4 25.6 94.4 17.6
Fine-tuned on LANL 92.5±1.3 14.2±7.7 86.3±4.3 4.6±3.7
Fine-tuned on OpTC 91.5±1.4 12.4±5.8 96.9±0.9 18.2±4.4

Ultra50g 88.0 2.9 90.9 26.4
Fine-tuned on LANL 88.8±2.5 7.7±6.5 84.5±3.2 2.9±2.0
Fine-tuned on OpTC 91.1±3.6 14.1±10.0 90.0±2.3 8.4±4.9

Ultra (no pre-training)
Trained on LANL 80.7±4.0 3.4±3.1 82.8±9.2 5.0±7.0
Trained on OpTC 75.4±8.7 2.6±3.8 74.6±12.5 1.1±0.3

HPF [5] 92.3±0.4 16.0±2.7 91.3±0.7 10.7±0.7
PTF [10] 90.4±2.6 3.8±1.6 88.1±2.9 3.1±1.3

Table 1: Results for the LANL dataset. For each metric, we report the mean
and standard deviation over 10 runs (except for the pre-trained models).

the exact same architecture as the pre-trained models. Each fine-tuned or fully
retrained model is trained on one of the two datasets and evaluated on both.
Detection performance is evaluated using both the area under the ROC curve
(AUC) and the average precision (AP), the latter giving a more realistic picture
when lateral movement edges are scarce (which is especially true in the LANL
dataset, where malicious edges account for less than 1% of new edges).

Baselines. We compare Ultra models with two transductive models used in
the lateral movement detection literature, namely hierarchical Poisson factoriza-
tion (HPF [5]) and Poisson tensor factorization (PTF [10]). The former does
not take the edge types into account, while the latter does. Both models rely
on node embeddings, the dimension of which is set by maximizing the predicted
probability of a held-out validation set. For each dataset, the baselines are
trained on the context graph and evaluated on the test set, providing a realistic
picture of how a standard lateral movement detector would perform.

3.2 Results and Discussion

The results of our experiments on the LANL and OpTC datasets are displayed
in Tables 1 and 2, respectively. Several points stand out: the pre-trained models
perform well overall, their performance improves when enriching the knowledge
graph representation of the data, fine-tuning them leads to contrasted results
and training an instance of Ultra from scratch on the benchmark datasets
yields inferior performance. The next paragraph further discusses each one of
these points and links them to the research questions highlighted in Section 2.
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Basic representation Rich representation
Model AUC AP AUC AP
Ultra3g 51.7 10.4 56.6 11.2

Fine-tuned on OpTC 53.6±2.5 10.9±0.5 56.5±5.7 12.3±2.7
Fine-tuned on LANL 56.7±4.0 12.0±1.0 58.0±5.3 12.1±1.5

Ultra4g 66.3 18.7 71.4 20.8
Fine-tuned on OpTC 60.6±7.7 13.4±2.9 56.5±4.6 13.3±2.2
Fine-tuned on LANL 54.8±3.2 11.4±0.7 65.1±6.6 17.6±4.6

Ultra50g 59.6 15.7 68.7 19.9
Fine-tuned on OpTC 61.0±4.8 13.1±1.7 56.6±6.8 12.3±1.8
Fine-tuned on LANL 63.8±3.6 15.7±2.0 75.4±5.1 23.0±5.0

Ultra (no pre-training)
Trained on OpTC 64.3±5.9 13.7±1.6 45.0±11.8 10.0±2.5
Trained on LANL 70.4±8.9 22.0±11.3 58.2±11.3 14.2±5.4

HPF [5] 64.6±2.1 19.8±1.4 64.1±1.5 14.1±0.9
PTF [10] 76.1±0.6 25.2±0.6 72.2±6.6 18.9±2.2

Table 2: Results for the OpTC dataset. For each metric, we report the mean
and standard deviation over 10 runs (except for the pre-trained models).

The most important outcome of our experiments is that pre-trained mod-
els achieve competitive performance in the zero-shot setting, especially with
the enriched representation (this partly answers research questions Q1 and Q3).
Specifically, Ultra4g and Ultra50g outperform both baselines on the LANL
dataset, while Ultra3g beats PTF but not HPF. As for the OpTC dataset,
PTF performs best but Ultra4g and Ultra50g come in second. Overall,
while pre-trained models do not systematically beat all baselines, the simple
fact that they perform similarly without ever being trained on cybersecurity-
related data is impressive. The inferior performance of Ultra3g relative to
the other two suggests that pre-training on many diverse knowledge graphs is
key to this result. Another notable outcome is that pre-trained models ben-
efit from enriched representations of the data (Q3), the only exception
being Ultra4g on the LANL dataset. In contrast, HPF and PTF do consis-
tently worse with the rich representation. A plausible explanation is that Ul-
tra relies on neural Bellman-Ford nets [7], which predict relations between two
nodes using indirect paths between them. Adding more relations to the context
graphs creates more indirect paths, leading to more reliable predictions. Finally
and perhaps surprisingly, training on lateral movement datasets does not
consistently improve performance (Q1, Q2). Specifically, fine-tuning alter-
natively degrades or slightly improves performance while Ultra models trained
from scratch globally perform worse than pre-trained models. The variance of
the results is also strikingly high, suggesting that the datasets used in our exper-
iments might be too small to enable consistent training. Interestingly, using a
model trained or fine-tuned on one dataset for inference on the other often works
better than training on the target dataset (Q2), which further hints towards the
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importance of diversity in the training set.

4 Future Work

In light of our experiments, one promising lead for future work is integrating
more data sources into the context graph. Note that for some data sources, the
dyadic nature of knowledge graphs might be too restrictive: for instance, the
start of a new process involves the program being started, its parent process,
the user starting it and the host on which the process starts. Recent advances
in inductive hypergraph completion [11] might help model such events more
adequately. It would also be interesting to pre-train a model such as Ultra on
many cybersecurity-related datasets: indeed, while our experiments highlight
the importance of diversity in the training set, using more relevant knowledge
graphs for pre-training might also lead to better performance. Finally, recent
contributions on lateral movement detection [3, 6] factor in the dynamic nature
of host communication graphs, combining GNNs with recurrent neural networks
(RNNs) to make time-dependent predictions. As a simple way to adapt inductive
knowledge graph reasoning to this setting, the context graph G could be built
dynamically while leaving the model itself unchanged.
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İsmail İlkan Ceylan. Link prediction with relational hypergraphs. arXiv preprint
arXiv:2402.04062, 2024.

392

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  


	PapersAndBack
	AllPapers
	Thursday
	ES2024-19-6






