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Abstract. Several methods for tensor clustering require hyperparame-
ters such as the cluster size or the number of clusters per mode. These
methods present a challenge because, for real datasets, such inputs cannot
be determined without incurring significant costs. Recently, Multi-Slice
Clustering (MSC) has addressed this issue by utilizing a threshold param-
eter to perform data clustering. MSC identifies signal slices that reside
in a lower-dimensional subspace within a 3rd-order rank-1 tensor dataset.
However, determining the tensor rank remains a complex task. The cur-
rent work introduces a new approach to tensor clustering that can extract
clusters of similar slices and is also capable of finding co-clustering and
triclustering in 3rd-order tensors of any rank. Our algorithm is based on
the density of the data.

1 Introduction

From an algebraic point of view, an n-way or n-th order tensor is an element
of the tensor product of n vector spaces, each of which has its own coordinate
system [1]. The tensor order indicates the number of dimensions in the array.
As a data structure, consider n1 individuals with n2 features and collect the
data for each individual-feature pair at n3 different times. This is an example
of a dataset structured in three dimensions. A convenient way to encode such
data is given by a 3rd-order tensor. Multidimensional data of this nature arises
in several contexts such as neuroscience [2] and computer vision [3]. To analyze
this data without having a detailed understanding of it, we use unsupervised
learning. Clustering is one of the most popular unsupervised learning methods
for extracting relevant information as the structural similarity in the dataset. It
operates by segmenting the dataset into significant groups or clusters. Thus, a
variety of computational methods have been developed for clustering multidi-
mensional data, ranging from matrices to higher-order tensors, as documented
in the literature [1, 4, 5, 6, 7].

The general structure of clustering algorithms requires the data to be treated
but also the hyperparameters in the inputs: cluster sizes or the number of the
clusters, as exemplified by the tensor biclustering [5] and the Multiway clustering
via tensor block models (TBM) [8]. These hyperparameters are not easy to set,
and more to the point, especially difficult to set for real data. Moreover, their
values influence the quality of the algorithm’s output. In [9], the authors provide
a method that replaces the number of clusters with a measure of similarity within
a cluster. This method is called Multi-Slice Clustering (MSC) and it performs
on 3rd-order tensors. There is however a limitation of the application domain
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of the MSC method. Indeed, the latter is designed to find one cluster within
rank-1 tensor datasets. Such a condition is equally difficult to verify for real
data [1]. Therefore, it is essential to have an efficient clustering method with the
higher-rank tensor dataset.

In this work, we introduce a novel clustering algorithm tailored for 3rd-order
tensor datasets. Our method leverages the density of the data to discern multi-
ple clusters within a tensor dataset, irrespective of its rank. We have designated
this technique as HDBSCAN for tensors (HDBSCAN-Tensor). As implied by its
designation, our approach entails representing the tensor as a matrix, where each
row corresponds to one slice from the original tensor. Subsequently, we employ
the HDBSCAN algorithm, Hierarchical Density-Based Spatial Clustering of Ap-
plications with Noise [10], to pinpoint groups of slices exhibiting high similarity
(refer to figure 1). The process commences with the eigendecomposition of each
slice, selecting the most substantial eigenvalue and its associated eigenvector to
represent the slice within the matrix. The HDBSCAN algorithm then utilizes
this matrix as the input data. Our algorithm necessitates the tensor data and
an integer parameter for HDBSCAN’s operation. Upon comparing our method’s
performance with other tensor clustering techniques, we have ascertained that
it yields competitive results.

· · ·

cluster 1 cluster c

Fig. 1: Clustering of the slices of a 3-rd tensor dataset

This paper is structured as follows: In section 2, we enumerate our notation
and elaborate on our model. In section 3, we show the experimental results of
our algorithm and benchmark the quality of these results against other methods.
Finally, in section 4, we summarize this work and offer future perspectives.

2 Notation and model

2.1 Notation

In this paper, we use T ,X ,Z to denote the dataset’s 3rd-order tensor. The
Matlab notation is employed for the tensor entries. Matrices are denoted by the
uppercase letters M,T , and the Frobenius norm of a matrix M is represented
by ∥M∥F . The boldface lowercase letters u,v,w, . . . signify vectors, while the
lowercase letters n, γ, λ, σ signify scalars. For a positive integer n, we define
[n] = {1, . . . , n}.
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2.2 Model

Our primary focus will be on 3rd-order tensors. Thus, let T ∈ Rn1×n2×n3 be
our tensor dataset. We decompose it as T = X +Z, where X is called the signal
tensor and Z the noise tensor. According to the CANDECOMP/PARAFAC
(CP) decomposition of a tensor [1], if the signal tensor is a sum of r rank-1
tensors, then T can be written as the following.

T = X + Z =
r∑

i=1

γi wi ⊗ ui ⊗ vi + Z (1)

where ∀i, γi > 0 stands for the signal weight, wi ∈ Rn1 ,ui ∈ Rn2 and vi ∈ Rn3

are unit vectors. wi and wj are orthogonal for all i ̸= j, the same property is
verified for the vector (ui)i and the vector (vi)i, the entries of Z are independent
identically distributed (i.i.d) standard Gaussian random variable.

The mode-1 slices of T form a matrix in Rn2×n3 , expressed as T (i, :, :) =
X (i, :, :) + Z(i, :, :) for all i ∈ [n1]. In the following, we denote by Ti, Xi and Zi

the i-th mode-1 slice of the tensor T ,X and Z, respectively.
The MSC approach emphasizes the representation of each slice by its largest

eigenvalue and the corresponding eigenvector (also called largest eigenvector)
for a rank-one tensor. Lemma 6 in [5] demonstrates that the infinity norm of
the difference between the largest eigenvector of the covariance matrix of Ti and
Xi approaches zero as the value of n3 increases sufficiently. Furthermore, the
largest eigenvector of Xt

iXi is shown to be equal to vi.
Let us assume that our signal tensor is the sum of two rank-one tensors:

X = γ1w1 ⊗ u1 ⊗ v1 + γ2w2 ⊗ u2 ⊗ v2, (2)

and Xi = γ1iu1v
t
1 + γ2iu2v

t
2, with γji = γjwj(i) for j ∈ [2]. This implies

that the vectors v1 and v2 belongs to the eigenspace of the covariance matrix
of Xi corresponding to the eigenvalues γ2

1i and γ2
2i, respectively. However, we

cannot assert that v1 is the largest eigenvector of Xt
iXi. Indeed, referencing the

definition in equation (1), we derive:

Xt
iXi = (γ1iu1v

t
1 + γ2iu2v

t
2)

t(γ1iu1v
t
1 + γ2iu2v

t
2)

= γ2
1iv1v

t
1 + γ2

2iv2v
t
2 (3)

This reveals that the slicewise clustering approach may offer enhanced efficiency
in determining subspace clustering for higher-rank tensor datasets.

The method that we propose is a combination of two methods: the construc-
tion of the eigenvector matrix, which is inspired by the MSC method [9], and
the matrix clustering method HDBSCAN [10]. Each slice is represented by its
largest eigenvalue and the corresponding eigenvector. For example, for the n1

slices in mode-1 we have the following matrix,

M = [λ̃1v1 λ̃2v2 · · · λ̃n1vn1 ]
t (4)
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where we set λ̃i = λi/λ, with λi is the largest eigenvalue of the covariance matrix
T t
i Ti and λ = maxi∈[n1] λi.

We then apply the HDBSCAN method to the matrix M . This method is a
clustering technique predicated on data density. It features a hyperparameter
known as min_cluster_size, which denotes the minimum number of samples
required in a group for that group to be considered a cluster. This parameter is
specified at the input of our algorithm.

The HDBSCAN-Tensor method identifies the clusters of slices for each mode
independently from other modes. Consequently, our algorithm delineates the
clustering for a single mode (refer to algorithm 1). The same principle is applied
to the remaining modes. Moreover, integrating the clustering results from two
modes yields tensor coclustering, while amalgamating the results from all three
modes delivers the multiway clustering of the tensor.

Algorithm 1 HDBSCAN for a 3rd-order Tensor
Data: The tensor data T ∈ Rn1×n2×n3 and the value of the min_sample
Result: The slice clustering C = (C1, · · ·Ck, · · · )
Inilialize the matrix M
λ← 0
for i = 1, · · · , n1 do

Center and reduce the columns of Ti

Compute Cov = T t
i Ti

Compute the largest eigenvalue λi and eigenvector vi of Cov
M [i, :]← λivi

if λi > λ then
λ← λi

end
end
M ←M/λ
C ← Compute the HDBSCAN algorithm to the matrix M

Complexity: We use the Rayleigh quotient iteration method to calculate
the largest eigenvalue and its corresponding eigenvector, which incurs a compu-
tational complexity of O(n2k) where k stands for the number of iteration [11].
The complexity of the HDBSCAN is O(n log(n)) [12]. Taking into account the
’for’ loop, the overall complexity of our algorithm amounts to O(n3k), with n
being the number of data points.

3 Experiments

To assess the efficiency of our method, we run it on both synthetic and real
datasets and benchmark the outcomes against those of the TBM method, the
MSC method, and the Tucker+k-means method [7].

Synthetic data: Initially, we apply our algorithm to a synthetic dataset.
The signal tensor is a sum of two rank-one tensors and it is generated according
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to the equation (1) such that for i ∈ [2], wi(j) = ui(j) = vi(j) = 1/
√
si, for

all j ∈ [si], where si is the number of the nonzeros entries of wi, ui, and vi,
respectively. The dimension of the tensor is fixed at n1 = n2 = n3 = 50 and
si = 10 for i ∈ [2]. The signal weight is varied from 20 to 75 in increments
of 5. For each level of signal weight, the algorithm is executed 10 times. On
each iteration, we calculate the Adjusted Rand Index to evaluate the clustering
quality [13]. Subsequently, we compute the mean and standard deviation of the
ten clustering quality assessments. The results are depicted in figure 2.

Fig. 2: The clustering quality for varying the signal weight.

We note that Tucker+k-means exhibits the best performance, which aligns
with our expectations given that the data is constructed in line with the CP
decomposition, which is a specific instance of the Tucker decomposition. The
TBM method ranks slightly above HDBSCAN-Tensor. It is important to remem-
ber that these two methods incorporate the actual number of clusters as input.
HDBSCAN-Tensor successfully identifies all clusters starting from weight = 60
by setting min_cluster_size=4. Lastly, MSC demonstrates the least effective-
ness, which is anticipated since MSC is not designed for tensors of higher rank.

Real data: In this experiment, the real dataset concerns the experimental
findings of Norgaard and Ridder (1994), who explored the challenge of measuring
samples containing three distinct analytes using a flow injection analysis (FIA)
system under a pH-gradient. The dataset forms a 12(samples)x100(wavelengths)
x89(times) array. Our objective is to discern the clusters of slices along the time
dimension. To appraise the outcomes, we calculate the root mean square error
(RMSE) for each cluster. The findings are presented in table 1.

Table 1: The RMSE of the clusters
mean of the RMSE RMSE of the best cluster

HDBSCAN-Tensor 1.056 0.870
Tucker+k-means 1.403 0.906
TBM 1.152 1.060

Setting min_cluster_size = 7 for the HDBSCAN-Tensor method, it becomes
obvious that our method outperforms the others. Note that to be able to
compare the cluster quality, we fix the number of clusters in the other meth-
ods to be the number of clusters obtained in HDBSCAN-Tensor. As we vary
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the value of min_cluster_size, our method consistently maintains the best
performance compared to the others. The code for our method is accessi-
ble at the provided repository link https://depot.lipn.univ-paris13.fr/
andriantsiory/hdbscantensor/-/tree/main.

4 Conclusion

We developed a density-based tensor clustering algorithm for independently clus-
tering single-mode slices, enabling co-clustering and multiway clustering when
combining modes. Our experiments show its effectiveness and high performance
compared to known clustering algorithms, particularly with real datasets of un-
known ranks. Future work may explore scalability for larger datasets.
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