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Abstract.

Many applications of deep learning are set in an environment with perpet-
ual change or at least with an ever-growing amount of data. In practice,
deep neural network (DNNs) and large language models (LLMs) are con-
tinually trained and evaluated. They need to incorporate new data or
new annotations, where one typical issue is the extensive availability of
unannotated or low-quality data, coupled with a bottleneck concerning
annotations and/or curated samples. In such setups, the scaling behavior
of continual learning (CL) algorithms w.r.t. training time becomes crit-
ical, which is in contrast to the standard CL setting operating on small
databases like MNIST, CIFAR or ImageNet. Annotations or curated sam-
ples become available progressively, e.g., because they are created by hu-
mans, or due to an ongoing exploration of the environment, and need to be
progressively incorporated into models. This article explores how advance-
ment in continual learning can improve the scalability and performance of
DNNs and LLMs in such setups. One interesting aspect is to leverage
dedicated (small-scale) CL techniques to achieve advantageous trade-offs
between computational cost and accuracy, or how such CL methods can
maintain advantageous scaling behavior w.r.t. continuous re-training on
all data.

1 Introduction

In many applications, new data arrive continuously and are added to an existing
data pool, and there is a need for a continual adaptation of models to all of
the existing data. Typical examples are large language models (LLMs), but
classification tasks(e.g., vehicle classification) can serve as a useful example as
well, since a model needs to be up-to-date w.r.t. new vehicle brands and types.
If we simplify this to a scenario where the amount of new data per time unit
d(t) equivd is constant over time, the total amount of data at time t is unbounded
and grows linearly. Since training time is ideally proportional to the amount of
data used for training, this implies unbounded linear scaling of training time
and, above all, cost. Please see fig. 1 for a visualization of this fundamental
problem in machine learning.

This is a very serious and fundamental issue, the solution of which would
enable really large-scale learning over long time periods. Some inspiration can
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Fig. 1: Continuous retraining as it is commonly performed in applications. New
data are continuously fed into an ever-growing data pool, which is continuously
used to train new models. The computational cost associated with this procedure
is unbounded and linear in time.

come from the field of continual learning (CL, see, e.g., [33]) which studies ma-
chine learning from non-stationary data distributions.

2 Continual Learning at Scale

CL is by now a quite broad sub-field of machine learning, with many new avenues
still being explored, see [33]. Traditionally, CL has focused on classification
tasks and supervised learning, but there are contributions in unsupervised and
reinforcement learning as well.

In supervised CL, data distributions are simplified from being completely
non-stationary to being non-stationary only at a finite set of transition points
between tasks where data distributions are taken to be stationary, see fig. 2. CL
in this scenario is required to accumulate knowledge of all tasks, typically without
any forgetting. Conflicting tasks, or deliberate forgetting, are not considered.

This simple ”default scenario” maps quite well to the continuous retraining
scenario, where every set of newly arriving data defines a CL task. Similarly,
typical application requirements assume that data is non-contradictory, so an
accumulation of knowledge without forgetting is the desired outcome.

However, this is just one aspect of CL research. Other scenarios addressed
in CL research include:

• Data growth: The scenario where more and more data becomes available is

Fig. 2: The ”default scenario” in supervised CL. Data are assumed to be
stationary except at tasks onsets. Often, such non-stationarities are modeled by
introducing a new class to the model.
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the most common one in continual learning as in class incremental learning,
domain incremental learning [32]. There might be constraints on accessing
past data, however the total amount of data grows over time.

• Objective shift: The objective shift [16], where the loss to optimize changes
through time has also been investigated, for example in reinforcement
learning [31], but also in a classification where the same image can have a
more and more precise label [1].

• Annotation growth: Continual learning can also be applied if all the data
is available since the beginning but annotation grows through time as they
are gathered. The model continually learns to be on top of the current
state of annotation and maximize possible performance. [35, 34]

• Compute growth: Something that has not been specifically investigated
in the literature, however, we could imagine specific approaches to handle
a change in compute availability. Indeed some hyper-parameters are set
for hardware specification [4], therefore a change in available compute re-
sources can lead to a change in optimal hyper-parameters for training and
change the optimization process.

3 Continual Learning as a solution for training at scale

Continual learning mainly focuses on acquiring new knowledge without forget-
ting already acquired knowledge. When training at scale, avoiding to reprocess
data usually helps to improve efficiency, i.e. avoiding forgetting is the way to
scale further. Since the potential types of non-stationary data distributions,
and the possible application constraints, are endless, many different aspects are
addressed by CL research:

• Forgetting and knowledge accumulation: Continual learning aims at
training efficiently machine learning models in dynamic data distribution
scenarios. The community has mostly focused on primarily preventing
models from forgetting while maintaining some plasticity [18, 13, 19, 26,
8], however recently some approaches aim at a relaxed and more general
approach consisting of ensuring that the model forgets less than it learns
and accumulates knowledge [17, 6].

• CL at constant time complexity: An in principle very obvious solution
is to make the learning complexity of CL proportional to the amount of
new data, not all data. After all, the old data has already been learned,
so most of the effort invested in continual re-training is actually wasted.
Two principled approaches have been put forward: Maximally Interfered
Retrieval [3] and Adiabatic Replay [15]. Both use new data to generate
synthetic samples, the incorporation of which will protect the underlying
model from forgetting when including them in the training process. Hence,
training complexity will be constant even over long time scales. A similar,
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scalable strategy is believed to be employed by biological agents, see, e.g.,
[14, 20]. In the line of simple and scalable approaches, when data distribu-
tion reoccurs through time, SGD and Adam showed interesting knowledge
retention and accumulation properties [17] in particular in self-supervised
learning [29, 12, 11, 10].

• Connection to federated learning: While continual learning aims at
training on different data distributions in a sequential manner, federated
learning aims at training on multiple data distributions in a parallel man-
ner [21, 27, 9, 28]. Numerous examples such as model merging [24] show
that methods for both can be identical and having both would be a signif-
icant advantage to scale up machine learning.

4 Discussion: The annotation bottleneck

Annotations are a necessary step to define what is the expected behavior of any
artificial intelligence system.

If data gathering practice scrapping the internet or other large existing
databases had allowed the creation of huge datasets [cite], gathering labels to
train a model for a specific application remains complicated and costly. Several
strategies exist to make this easier and more label-efficient.

• Self-supervised training and priors: One of the recent improvements
in label efficiency is the development of general foundation models that
can easily be adapted for downstream tasks in language and vision [cite].
Those models incorporate general knowledge and prior that can later be
beneficial for continual learning downstream tasks [7, 23, 22]

• Automatic label extraction: Beyond making the model easier to fine-
tune, some strategies create labels automatically, either by crossing databases,
automatically using caption of images for example from Instagram, or by
generating labels automatically. This strategy can, for example, be used
in Vision-Language Models (VLMs) such as PaliGemma [5], CLIP [25], or
Flamingo [2].

• Designing a reward function: RL has also recently helped to fine-tune
models in an efficient way to make models more aligned with our objectives
like RLHF for language models [36], or reward function for vision models
[30].

• Active learning: Historically active learning is the research field that
aims at gathering labels in a cost-efficient way and some methods are
often used to guide annotations [cite].

Continual learning can considerably help with training at scale and improv-
ing performance, however, as one still has to define the expected behavior of
the models, developing an efficient annotation system and fine-tuning either for
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training or evaluating stays a bottleneck for developing and assessing AGI mod-
els.

5 Conclusion

The recent interest in scalable machine learning underlines the need for a prin-
cipled solution to the problem of continuous retraining. Such a scalable solution
will almost certainly include techniques from the CL domain and pave the way
to truly long-term machine learning, with a significant impact on energy con-
sumption, training time, and cost. To this end, CL methods must be adapted
for scalability which has not hitherto been a significant issue. In supervised CL,
the number of tasks (or re-learning iterations) must be assumed to be very large
to make scaling effects apparent in future CL research.

Apart from this principled problem, large-scale learning will still require ap-
propriate strategies to improve label efficiency, for better leveraging the available
data and the (usually low) amount of available annotations.
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[23] O. Ostapenko, T. Lesort, P. Rodŕıguez, M. R. Arefin, A. Douillard, I. Rish, and L. Charlin.
Continual learning with foundation models: An empirical study of latent replay, 2022.

[24] P. Qi, D. Chiaro, A. Guzzo, M. Ianni, G. Fortino, and F. Piccialli. Model aggregation
techniques in federated learning: A comprehensive survey. Future Generation Computer
Systems, 150:272–293, 2024.

[25] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language
supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021.

[26] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier
and representation learning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2001–2010, 2017.

[27] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný, S. Kumar, and H. B.
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