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Abstract. To minimise its loss function, the popular method of nonlin-
ear dimensionality reduction t-SNE requires O(N2) computations. As its
applications often involve large datasets, fast approximations have been
developed, such as Barnes-Hut t-SNE and FIt-SNE. Most fast approxi-
mations to t-SNE require the embedding dimensionality to be small, typ-
ically 2 or 3, limiting the use of t-SNE to data visualisation. Addition-
ally, the effective computation time of the current accelerated t-SNE al-
gorithms stays too high for a comfortable interactive visual exploration
of data. This paper proposes an accelerated approximation to t-SNE
with iterations of complexity O(NK), which does not rely on the use
of a model to capture information about the low-dimensional space, re-
lieving the computational burden of high dimensionality of the embedding
space. For this purpose, the proposed method approximates neighbour
sets and keeps track of smoothed estimations of long-range interactions
in O(NK) time. The method is qualitatively tested on a handful of
datasets and shows comparable results to existing fast neighbour embed-
ding methods in the context of data visualisation. Code is available at
https://github.com/PierreLambert3/c_fast_hSNE.git.

1 Introduction

Dimensionality reduction (DR) with t-SNE [1] has raised much interest and is
now widely used in many application domains, noticeably in computational biol-
ogy [2]. Part of this popularity stems from the availability of fast approximations
of t-SNE. The original t-SNE scales in O(N2) per iteration, due to considering all
pairwise interactions. In Barnes-Hut t-SNE [3], space-partitioning trees are used,
namely, vantage-point trees to identify the K nearest neighbours in the high-
dimensional(HD) data space, which are involved in short-range attractive forces,
whereas Barnes-Hut quad-trees are used in the low-dimensional(LD) embedding
space to aggregate and approximate long-range repulsive forces. Embedding
data points is then inspired by methods that where originally developed to solve
N -body problems in physics and astronomy, and thus to produce force-directed
layouts in mechanics. Such binary or quaternary trees allows the computational
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complexity to reduce to O(N log2 N). More recent methods include FIt-SNE
[4], LargeVis [5], and UMAP [6], where the complexity can further drop down to
O(N) per iteration, using fast multi-pole approximations or ’negative sampling’
of points to estimate the repulsive forces. Recent works [7, 8] have also inves-
tigated modifying the weight of the tail in the LD neighbor distribution, which
impacts the shape of the mismatch with the Gaussians in HD, yielding in turn
a spectrum of embeddings where clusters might be more or less separated.

This paper proposes a fast approximation to t-SNE (O(N)) which does not
rely on modeling the LD space with data structures. This removes the usual
restrictions on the dimensionality of the LD embedding space, potentially open-
ing t-SNE to new applications. In addition, the method learns the pairwise high
dimensional relationships iteratively, allowing instantaneous visual feedback to
the user when changing a hyperparameter or launching the method.

The rest of this paper is organized as follows. Section 2 goes through a brief
reminder of t-SNE and its variable tail weight variants, sometimes coined ht-
SNE, where ‘h’ refers to heavy or heavier tails. Section 3 describes the proposed
method, which implements a fast ht-SNE without any specific data structure
or model of the LD space, apart from a list of neighbours. Section 4 reports
some results on various data sets. Section 5 concludes this paper and sketches
perspectives for future work.

2 Variable tail weight in t-SNE

Neighbour embedding (NE) gathers methods of DR like stochastic neighbor em-
bedding (SNE) [9], t-distributed SNE (t-SNE) [1], and UMAP [6]. These per-
form DR by preserving soft neighborhoods with pairwise similarities. In SNE,
Gaussian kernels are used to smoothly (and derivably) model neighborhoods in
both HD and LD space. The minimisation of the Kullback-Leibler divergences
between the HD and LD distributions yields the low dimensional embedding.
To enhance the separation of points into clusters, t-SNE forces a mismatch be-
tween LD and HD similarities by modeling the LD relationships with a Student
t-distribution. Formally, let X = [xi]1≤i≤N and Y = [yi]1≤i≤N denote the
data coordinates in the HD and LD spaces, respectively. Then, the symmetric
pairwise affinities pij are

pj|i =
exp−∥xi − xj∥2/2σ2

i∑
k ̸=i exp(−∥xi − xk∥2/2σ2

i )
, pi|i = 0 , and pij =

pj|i + pi|j

2N
, (1)

where the radii σi are adjusted to comply with a user-set perplexity. In the LD
space, the similarities are defined

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1

, qii = 0 . (2)

The joint KL divergence L = KL(P ||Q) =
∑

i̸=j pij log(pij/qij) is here the loss
to be minimised using gradient descent with momentum. The gradient of the
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KL divergence is ∂L
∂yi

= 4
∑

j ̸=i(pij − qij)(1 + ∥yi − yj∥)−1(yi − yj), where pij
and qij are responsible for attractive and repulsive forces between yi and yj ,
respectively. Extended versions of t-SNE exists, like HSSNE [8], where the LD
kernel can have tails of varying weights, revealing different views on the data.
Here, a (non-integer) power α parameterizes the LD kernel, like in [7], instead
of degrees of freedom. This gives

wij =

(
1 +

∥yi − yj∥2

α

)−α

, qij =
wij∑
k ̸=l wkl

, qii = 0 . (3)

The gradient to ht-SNE becomes ∂L
∂yi

= 4
∑

j(pij − qij)w
1/α
ij (yi − yj).

3 The proposed method: ht-SNE

Typically, fast t-SNE accelerations first compute the HD similarities P and then
start iteratively updating the LD coordinates for a set duration. In data visu-
alisation, this forces the user to wait after each action before receiving a visual
feedback from the iterative part of the optimisation. Ideally, one could imagine a
version of (h)t-SNE without a set number of iterations, taking place within an in-
teractive software environment where user-driven inputs take effect immediately
and seamlessly on screen. This would allow for a more insightful exploration
of the data by dynamically visualising the effects of hyperparameter changes,
such as the LD similarity kernel, perplexity, learning rate, or distance metric.
The proposed method allows such a setup by intertwining a neighbour discovery
phase and an LD coordinate optimisation phase during optimisation, both at
O(NK) cost.

For the ith point number, let the approximate twin sets of HD and LD neigh-
bours be denoted N̂HD

i and N̂LD
i . The size of N̂HD

i is set to 3 times the perplexity,
and N̂LD

i to a small value between 5 and 30. During neighbour discovery, each point
refines both sets by looking at candidate points. Exploration is done by uniformly sam-
pling candidates across the dataset. Exploitation is ensured by generating candidate
points from neighbours of neighbours as in [5], and from points from the twin set: can-
didate indices for N̂LD

i are sampled from N̂HD
i and reciprocally. This heuristic closes

a convenient positive-feedback loop between the minimisation of the cost function and
the quality of the neighbour estimations. Better neighbour approximations mean more
accurate gradients, and therefore a better embedding. A better embedding means that
when generating candidates for N̂LD

i by looking at neighbours of neighbours in LD, the
hit rate gets higher. Conversely, from LD to HD, a more accurate N̂LD

i means better
candidates for N̂HD

i when looking at N̂LD
i . The two-way feedback between embedding

and estimated neighbours allows the method to ‘recycle’ some of the computations
carried out by t-SNE to further refine N̂LD

i directly and N̂HD
i indirectly. Since the

embedding changes from iteration to iteration, N̂LD
i needs to be refined at each iter-

ation. On the other hand, the HD positions remain static throughout the process, it
therefore becomes inefficient to pursue refinement of the HD sets at each iteration. For
this reason, N̂HD

i has a probability of being updated equal to the exponential average
through time of the percentage of points that were updated in the HD neighbour es-
timation recently, this value cannot be lower than 0.02 to prevent missing too many
opportunities without impacting the effective performance.
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At the heart of any version of t-SNE are the matrices P and Q. Here, the HD
similarities P̂ are sparse approximations similar to other accelerated versions of t-SNE
[3, 4], they are recomputed with a probability corresponding to the smoothed percent-
age of changes in HD neighbours as described above. Whenever N̂HD

i is updated, σi

is updated to comply with the desired perplexity.
To approximate qij , it is necessary to estimate the value of

∑
k ̸=l wkl. Here, an

exponential average through time is used to represent the sum. To do so, an accumu-
lator is initialised at 0 at each iteration, whenever a value for qij for two points i and
j has to be computed, the accumulator is increased by the value. At the end of each
iteration, the accumulator is scaled to simulate N∗N contributions, it is then used to
update the value of the average through time.

The gradient of ht-SNE can be rewritten around this division in neighbour sets.
Let ∂L

∂yi|j
= 4(pij − qij)w

1/α
ij (yi − yj) be the gradient on yi resulting from interacting

with the point number j, the ht-SNE gradient can be written ∂L
∂yi

=
∑

j
∂L

∂yi|j
. The

gradient for the parameters in yi can be rewritten as

∂L

∂yi
=

∑
j∈N̂LD

i

∂L

∂yi|j
+

∑
j∈N̂HD

i

& j /∈N̂LD
i

∂L

∂yi|j
+

∑
j /∈N̂LD

i

& j /∈N̂HD
i

∂L

∂yi|j
. (4)

Knowing P̂ and the estimation of
∑

k ̸=l wkl, computing the first two elements of ∂L
∂yi

is

fast. Because of the heavy tail of Q̂, relative to P̂ , the third element of ∂L
∂yi

is dominated
by the repulsive distant interactions between the ith point and the rest of the data set.
These far-reaching interactions on i are approximated by sampling a number (here 40)
of random indices j across the dataset.

This paper uses Nesterov’s momentum [10], as it performs well for t-SNE [11] and
can bring visually smoother transitions. Changing α can reveal different aspects of
the data. However, this can cause shrinkage of over-expansion of certain zones of
the embedding, making visual interpretation difficult. For this reason, the momenta
are split into attractive forces and repulsive forces, the repulsive momenta are scaled
by a parameter ϕ that can be modified accordingly. Moreover, when increasing the
attraction/repulsion ratio through changes in ϕ, a similar effect to early exaggeration
[3, 4, 2] can be obtained.

4 Results

The proposed method is tested on 3 datasets: the 60.103 observations of the MNIST
train set; COIL-20, which consists of 1440 photographs of 20 rotated objects, drawing
manifolds in the shape of rings; and Anuran calls, available on the UCI machine learning
database.

In Fig. 1.A, MNIST (left) and COIL-20 (right) are reduced to 6 dimensions, the
axes are grouped by 2 to produce 3 embeddings. The proposed method appears to
produce clear clusters and to utilise the available degrees of freedom to organise the
points together. For instance, on COIL-20, some rings that tend to be cut when
projecting in 2d instead organise as a pile of rings when seen through certain angles.

Panel B compares the proposed method with FIt-SNE on COIL-20, showing similar
results. If using the algorithm in an interactive environment, data exploration is greatly
enhanced when tweaking and experimenting with α and ϕ as well as when taking
advantage of the information contained in the motion of points. Panel C attempts to
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Fig. 1: A: Triptychs of 6-dimensional t-SNE embeddings of MNIST and COIL-20, the three
embedding axes correspond to dimensions (1,2),(3,4), and (5,6). B: Qualitative comparison of
the proposed method to FIt-SNE, on COIL-20. C: Example intended use of this algorithm,
where varying α (”a”) and ϕ (”rep”) can reveal different aspects of the data, such as a global
hierarchy using small distribution tails (high α) and a finer-grained cluster organisation using
large distribution tails. D: Percentage of points whose LD or HD neighbour sets where updated,
across 2000 iterations on MNIST.

demonstrate this by showing the effect of changes to α and ϕ on the embedding. With
reasonable dataset sizes (less than roughly 20.103), transitions from one embedding to
the other are seamless and take a few seconds on a CPU from 2021. Changing ϕ can be
particularly useful to stretch out dense clusters when the LD tails are particularly heavy
(bottom two embeddings). This panel illustrates that the method produces results
that can vary greatly with the choice of hyperparameters, a tendency that needs to
be addressed in most unsupervised methods. The proposed algorithm is designed with
interactivity at the forefront: it is intended to be used in tandem with human input
to modify various hyperparameters on the fly (learning rate, perplexity, ϕ, α, distance
metric in HD, kernel in LD), and quickly assess the impact of the hyperparameter
changes. The interactivity loop can be helpful in the task of visual data exploration,
in particular when used in conjunction with quality assessment criteria and additional
data analysis methods. However, when producing an embedding with more than three
dimensions, a more thorough search of the hyperparameter space remains to be done
in order to develop heuristics for the choice of hyperparameter values.
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Panel D shows the evolution of the percentage of points whose sets N̂LD
i and N̂HD

i

were updated, across the first 2000 iterations on MNIST with fixed hyperparameters.
The change in LD neighbours decreases to a constant higher than 0, due to slight
changes in the embedding that remain at convergence (these are barely noticeable
visually when watching the embedding). This observation suggests that a decaying
learning rate could be beneficial once the user is satisfied with the hyperparameter
choices.

5 Conclusion

The proposed acceleration to (h)t-SNE runs at a competitive speed without restrict-
ing the dimensionality of the embedding space. Moreover, the method continuously
updates and refines the HD relationships, allowing for a visual representation that can
react quickly and seamlessly to user inputs. Further works include technical aspects
such as a GPU implementation, and a more prospective path by studying the prop-
erties of the LD space when targeting an embedding dimensionality that exceeds the
usual 2 or 3.
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