
Recurrent Neural Network based Counter
Automata

Sergio Leal Andrés and Luis F. Lago-Fernández ∗

Departamento de Ingenieŕıa Informática, Universidad Autónoma de Madrid
Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain

Abstract. This paper presents a neural network architecture that aims to
merge RNNs and push-down automata in order to address the recognition
of formal languages improving interpretability. The model manages to
reproduce a behaviour equivalent to that of an automaton, making it more
generalizable and interpretable. Validation has been carried out through
several experiments, testing not only convergence but also adaptability and
training speed, and comparing the results with similar existing models, as
well as with an LSTM. The proposed model serves as a starting point
with excellent results, and serves as a basis for future extensions to more
sophisticated architectures.

1 Introduction

Recurrent Neural Networks (RNNs) have been extensively studied for their abil-
ity to process various formal languages [1, 2]. RNNs, especially those with gating
mechanisms like Long-Short Term Memory (LSTM) [3], have demonstrated ca-
pabilities in learning both regular and context-free languages to a certain extent
[4, 5]. However, training these networks doesn’t always result in a set of weights
that can effectively recognize certain languages with sufficient generalization. To
tackle these issues, many researchers have worked on converting RNNs trained
on regular languages into Deterministic Finite Automata (DFA) [6, 7]. A newer
method involves making changes to the RNN architecture to make sure it ef-
fectively acts as a finite automaton [8]. Here, the network weights represent
transition probabilities between the automaton’s states, which can be learned
by gradient descent. The main benefit of this approach is that the automaton is
intentionally constructed by design, rather than being derived from an RNN.

In this work, we aim to present an extension of the model above, which
incorporates a differentiable stack in order to deal with non-regular languages.
We consider two different stack implementations, one based on the work in [9]
and a new approach where several stack situations are managed simultaneously
in a probabilistic way. Both models have been implemented considering a stack
of just two symbols, which enables the recognition of not only regular languages,
but also a subset of the deterministic context-free languages. The innovation of
our proposal lies on designing the network architecture to function as a Weighted
Finite Automaton (WFA) with stack access, making the model not merely a
stack-enhanced RNN, but a true probabilistic push-down automaton. As a proof

∗This work has been partially funded by Spanish projects PID2020-114867RB-I00 and
PID2023-149669NB-I00 (http://www.mineco.gob.es/).

491

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

http://www.mineco.gob.es/)

of concept, we apply the models to several context-free and regular languages,
and compare them to a standard LSTM network.

In the following, we will first describe our model (section 2), the experiments
carried out (section 3), and the training settings (section 4). We end with a
presentation of the results in section 5 and a brief discussion in section 6.

2 Model

The model adopts a similar approach to the one described in [8], but it includes
a differentiable stack inspired by [9]. We consider only two different symbols
in the stack alphabet, Γ = {ϵ, κ}, where ϵ is the initial stack symbol and κ is
stacked with each push operation. The stack is modeled using a d-dimensional

array, c(t), whose components c
(t)
k , with k = 1, ..., d, represent the probability of

the stack containing exactly k − 1 symbols of type κ. Given a one-hot encoded
input vector at time t, x(t), the previous state probabilities, q(t−1), and the
probabilities for each stack top symbol, s(t−1), the new state probabilities are
obtained by first performing the following tensor operation:

z
(t)
l =

|Σ|∑
i=1

n∑
j=1

|Γ|∑
k=1

x
(t)
i q

(t−1)
j s

(t−1)
k Wijkl, (1)

and then applying the softmax function to z(t):

q(t) = σ(z(t)). (2)

Here Wijkl are the components of a |Σ| × n × |Γ| × n weight tensor, with n
the number of states and Σ the input alphabet. Equivalently, the stack action
probabilities, a(t), are given by:

r
(t)
l =

|Σ|∑
i=1

n∑
j=1

|Γ|∑
k=1

x
(t)
i q

(t−1)
j s

(t−1)
k Vijkl, (3)

a(t) = σ(r(t)), (4)

where Vijkl are the components of a |Σ| × n× |Γ| × b weight tensor and r(t) and
a(t) are b-dimensional vectors, with b the number of stack actions. We consider
b = 4, with the four possible stack actions being push, pop, stay and reset. The
model output at time t is calculated with an additional softmax layer applied to
the state probabilities q(t):

y
(t)
i = σ(

n∑
j=1

Zijq
(t)
j), (5)

where Z is a o×n weight matrix, with o the output dimension. Finally, the new
stack probabilities, c(t), are obtained as:

492

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

c
(t)
k =

b∑
i=1

d∑
j=1

a
(t)
i c

(t−1)
j Mijk, (6)

whereM is a fixed tensor whose slices along the first dimension are d×dmatrices
that perform the push, pop, stay and reset operations, respectively. A second
variant of the model uses the stack implementation described in [9].

Following the approach in [8], the weight tensors W and V are regularized
by adding the following entropy penalization term to the loss function:

H(W,V) = −λ

|Σ|∑
i=1

n∑
j=1

|Γ|∑
k=1

(
n∑

l=1

W̃ijkl log W̃ijkl +
b∑

l=1

Ṽijkl log Ṽijkl

)
, (7)

where the tensors W̃ and Ṽ are the result of applying the softmax operator
along the last dimension of W and V, respectively.

3 Experiments

We perform experiments with the following datasets:

• anbn grammar: The first experiment considers strings of the form anbn,
with n ≥ 0. It serves as a fundamental example to explain why there
are some grammars that cannot be recognized by finite automata. This
grammar is key for testing our model because it should not require to
alternate between pushes and pops in the stack.

• Balanced Parenthesis: In order to keep testing the different models in
other context-free grammars, we will test it in the balanced parenthesis
problem, which increases the complexity level because nested strings are
processed and therefore require alternating between pushes and pops in the
stack. The language in focus has two symbols, (and), and it represents
strings with balanced parentheses.

• Tomita grammars: Apart from the previous context-free grammars, we
will evaluate the models with a well-known set of regular languages, known
as the Tomita grammars [10], which has become popular in the grammat-
ical inference field.

In all the cases, the training data consist of several strings separated by the
$ symbol. The goal is to predict, for each input symbol, whether the partial
string starting in the last $ is correct or not according to the grammar. The
details regarding dataset generation can be consulted in [8] and [11]. We provide
examples of input and output strings, for the anbn and the balanced parentheses
problems, in table 1.

493

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

anbn

input $ a a a b b b $ a a b b $ a ...
output 1 0 0 0 0 0 1 1 0 0 0 1 1 0 ...

balanced parentheses
input $ () (()) () $ () () ...
output 1 0 1 0 0 0 1 0 1 1 0 1 0 1 ...

Table 1: Example of input-output strings for the anbn (top) and the balanced
parenthesis (bottom) problems.

4 Model Training

The training phase for all the experiments followed a similar procedure. Ini-
tially, we designated the initial state as q(0) = (1, 0, 0, ..., 0) and the initial stack
as empty, setting the model’s weights with a random uniform distribution. The
model was trained by minimizing the binary cross-entropy using an Adam opti-
mizer [12], during a maximum of 1000 epochs. The metric used to measure the
accuracy was the binary-accuracy. The batch size and sequence length chosen
were 32 and 25 respectively. The other relevant hyperparameters were the num-
ber of states and the stack size, both of which were set to 20. The regularization
parameter is set to λ = 10−5.

5 Results

We compare three models in terms of their convergence speed and the quality of
the solutions they obtain. The first model is the one described in section 2. The
second is a variant that uses the stack implementation in [9]. The third one is
a standard LSTM with the same number of trainable parameters as the others.
We will refer to them as COUNTER, MIKOLOV and, LSTM, respectively.

5.1 Convergence speed

Although the three models are able to solve all the problems with high accu-
racy, they converge at different speeds. In particular, the COUNTER and the
MIKOLOV models show similar convergence rates, whereas the LSTM model
converges faster. Fig. 3 (left panel) shows an example for the balanced paren-
theses problem. However, despite a faster convergence, the LSTM model fails
to generalize when long sequences are considered (see section 5.3).

5.2 Convergence to an automaton

In spite of a slower convergence, the COUNTER and the MIKOLOV models
converge to deterministic automata which correctly abstract the properties of
the languages for all the problems considered, generalizing well to new strings.
We show examples of the obtained automata for the anbn problem and the

494

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

balanced parentheses problem in Fig. 2 and Fig. 1 respectively. The results
for the Tomita grammars improve those in [8], making a use of the stack that
grants a reduction in the number of states while maintaining the correctness of
the solution. The models learn to use the stack as a way to differentiate between
several situations in a single state, hence multiplying the effective number of
states. This has been observed for all the problems with the exception of the
Tomita 1 language which, due to its simplicity, can be solved with a two-state
automaton.

Fig. 1: Automaton obtained for the
anbn problem.

Fig. 2: Automaton obtained for the
balanced parentheses problem.

5.3 Adaptability

Here we show how the models adapt when we increase the parenthesis depth in
the balanced parentheses problem. The training dataset has been built with a
maximum parenthesis depth of 13, whereas several tests of increasing complex-
ity, in terms of their maximum recursive depth are considered. As expected,
the COUNTER and the MIKOLOV models maintain a high accuracy when we
increase the maximum parentheses depth (Fig. 3, right panel). However, the
LSTM model is not able to generalize to very deep strings.

0 20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

LSTM
MIKOLOV
COUNTER

102 103
Maximum Depth

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

M
od

el
 A
cc
ur
ac
y

LSTM
COUNTER
MIKOLOV

Fig. 3: Left. Loss vs number of training epochs for the balanced parentheses
problem. Right. Accuracy on the test set as a function of the maximum paren-
theses depth (in log scale).

495

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

6 Discussion

Recurrent neural networks and automata have been studied separately over the
years, but recently novel models propose a combination of these. In this article,
we have compared what is probably the most powerful RNN, the LSTM, with
some of these mixed models. The results are surprising: we see that more
complex structures, which as expected slow down training, produce results with
greater adaptability. We have seen how, by design, our neural network behaves as
an automaton, which is an example of how to make such intelligent models easier
to interpret. The proposed model represents only part of the way forward, which
is to explore how even more complex structures, such as trees, full stacks, or
even heaps, can help to achieve breakthroughs, bringing RNNs and grammatical
inference more strongly together.

References

[1] C. L. Giles, C. B. Miller, D. Chen, G. Sun, H. Chen, and Y. Lee. Extracting and learning
an unknown grammar with recurrent neural networks. In Advances in Neural Information
Processing Systems 4, [NIPS Conference, Denver, Colorado, USA, December 2-5, 1991],
pages 317–324, 1991.

[2] Z. Zeng, R.M. Goodman, and P. Smyth. Learning finite state machines with self-clustering
recurrent networks. Neural Computation, 5(6):976–990, 1993.

[3] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 1997.

[4] M. Casey. The dynamics of discrete-time computation, with application to recurrent
neural networks and finite state machine extraction. Neural Computation, 8(6):1135–
1178, 1996.

[5] F.A. Gers and J. Schmidhuber. LSTM recurrent networks learn simple context-free and
context-sensitive languages. IEEE Trans. on Neural Networks, 12(6):1333–1340, 2001.

[6] S. Lawrence, C.L. Giles, and S. Fong. Natural language grammatical inference with
recurrent neural networks. IEEE Trans. Knowl. Data Eng., 12(1):126–140, 2000.

[7] M. Cohen, A. Caciularu, I. Rejwan, and J. Berant. Inducing regular grammars using
recurrent neural networks. CoRR, abs/1710.10453, 2017.

[8] J. Fdez. del Pozo Romero and L.F. Lago-Fernández. Gradient-based learning of finite
automata. In International Conference on Artificial Neural Networks, pages 294–305,
September 2023.

[9] A. Joulin and T. Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets. In C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, [NIPS Conference, Montreal,
Quebec, Canada, December 7-12, 2015], pages 190–198, 2015.

[10] M. Tomita. Dynamic construction of finite automata from examples using hill-climbing.
In Proceedings of the Fourth Annual Conference of the Cognitive Science Society, pages
105–108, Ann Arbor, Michigan, 1982.

[11] C. Oliva and L.F. Lago-Fernández. On the interpretation of recurrent neural networks
as finite state machines. In Artificial Neural Networks and Machine Learning - ICANN
2019, Munich, Germany, September 17-19, 2019, Proceedings, Part I, pages 312–323,
2019.

[12] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diego, CA, USA, 2015.

496

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

	PapersAndBack
	AllPapers
	Thursday
	ES2024-211-5

