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Abstract. The volume of data collected from patients enrolled in clini-
cal trials is constantly on the rise. Classical linear and generalized linear
models used in this context are unable to keep pace with this trend. Con-
versely, machine learning models have the potential to deal with such data,
but cannot provide guarantees in terms of bias and interpretability. This
paper explores a transfer learning approach that seeks to harmonize the
strengths of both paradigms: providing unbiased and interpretable esti-
mators while minimizing the expected predictive risk in finite samples.

1 Introduction

The volume of data collected from the limited number of patients enrolled in
clinical trials is constantly on the rise. Accessing genomic, proteomic, and activ-
ity data has never been more convenient. In the context of clinical research, the
use of these data holds the promise of crucial insights into patient characteriza-
tion and a deeper comprehension of treatment efficacy. However, the magnitude
and diversity of these datasets present important challenges for their analysis.

Analyses of clinical trials often aim to estimate the effect of a few parameters
of interest, such as the treatment and its interaction with age, and sex, on the
evolution of a disease. Traditional statistical methods, such as ANOVA, AN-
COVA, logistic regression, or Cox models, are commonly used because of their
good statistical properties and high interpretability. Yet, they fall short when
trying to improve the estimation of these parameters of interest while adjusting
for more complex data e.g. featuring an extensive number of variables or more
complex structures. Conversely, more complex machine learning models deal
with these data but often at the cost of reduced interpretability or the introduc-
tion of biases due to their assumptions e.g. in ridge regression or lasso [1].

This paper presents a transfer learning approach that seeks to harmonize
the strengths of both paradigms: the performances and adaptability of machine
learning with the assurances of interpretability and unbiasedness of classical
statistical methods.

2 Generative model of the data

We are here looking to estimate precisely a set of chosen parameters in the
presence of noise. The response model writes

Y = µ+ γTZ + U (1)

where Z = (Z1, . . . , Zd)
T is a vector of d variables of interest. γ is the vector

of parameters we are looking to estimate, U is the error term, and µ is the
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intercept. The random variable U ∼ N (0, σ2
u) accounts for factors not linked

with treatment and is assumed to be independent of Z. This independence
is guaranteed in randomized clinical trials where Z represents the treatment
assignment or interactions with the treatment. The random variable U may in
turn be expressed as a function, φ, of a vector of p covariates, X = (X1, . . . , Xp)

T

and an error term.
U = φ(X) + ε (2)

The error term ε is assumed to be normally distributed N (0, σ2
ε), independently

of X and Z. We have divided our model into two parts, Z and X, to highlight
the role of each part. Z are the variables of interest and X are covariates only
used for improving the estimation of γ.

The first part of this paper assumes a linear dependence between the covari-
ates and the response: φ(X) = βTX. Thus, by combining Equations (1) and
(2) and assuming µ = 0 without loss of generality, the general regression model
writes

Y = γTZ + βTX + ε. (3)

The non-linear φ(X) is discussed at the end of this paper.
Now, consider a random sample of n observations where Z ∈ Rn×d, X ∈

Rn×p represent respectively the matrices of observed patients’ variables and
covariates. Without loss of generality, we can assume that the columns of Z
are standardized and orthogonal to each other. Hence, the gram matrix of Z is
diagonal, ZTZ = (n − 1)Id. Indeed, this paper aims to discuss the benefit of
X in the estimation of γ irrespective of the collinearity between the variables of
interest.

3 Predictive risk

To evaluate the relevance of the information contained in X for the evaluation of
γ, we can compare the evolution of the predictive risk using the same framework
as in [1]. Consider a test point z0, independent of the training data. For the
estimator γ̂, its out-of-sample prediction risk (or ‘risk’) can be defined as:

RZ,X(γ̂, γ) = E[(zT0 γ̂ − zT0 γ)
2|Z,X] = E[∥γ̂ − γ∥2Σz

|Z,X]

where ∥x∥2Σz
= xTΣzx, and Σz is the covariance matrix of Z. This definition of

the risk is conditional on the variable of interest Z (the target for the estimation)
and all other variables for the adjustment X (only used to have a more precise
estimation of γ). Of note, our risk definition slightly differs from [1] as it does

not include β̂. Indeed, we consider here that only γ is of interest and not β.
This risk can be decomposed between bias and variance:

RZ,X(γ̂, γ) = ∥E(γ̂|Z,X)− γ∥2Σz︸ ︷︷ ︸
BZ,X(γ̂,γ)

+Tr[Var(γ̂|Z,X)Σz]︸ ︷︷ ︸
VZ,X(γ̂,γ)
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4 Predictive risk of using covariates

To estimate the added value of the covariates X, we should compare the predic-
tive risk of the estimators of γ with and without them. To avoid any confusion,
we denote by γ̂0 the ordinary least squares (OLS) estimator of γ when no co-
variate is used in the regression (Equation 1) and by γ̂p when p covariates are
included in the regression (Equation 3).

The variance-covariance matrix of γ̂0 conditional on Z is:

Var(γ̂0|Z) = (ZTZ)−1σ2
u = Dσ2

u (4)

where D is a diagonal matrix whose diagonal elements are Dkk = 1
n−1 . The

variance-covariance matrix of γ̂p conditional on X and Z is:

Var(γ̂p|Z,X) =
[
D +DZTXS−1XTZD

]
σ2
ε (5)

where S = XT (In − ZDZT )X. Ordinary least squares estimators are unbi-
ased [1]. Knowing that Σz is Id per construction, the risk can be computed from
the variance-covariance matrix:

RZ,X(γ̂p, γ) = Tr[Var(γ̂p|Z,X)Σz] = σ2
ε

d∑
k=1

[
D +DZTXS−1XTZD

]
k,k

(6)

The risk is conditioned on Z and X. X is not known and should thus be treated
as a random variable. A common assumption is to assume that the covariates
are isotropic and generated with multivariate normal distribution X ∼ N(0,Σ)
where Σ = Ip. Then, we can compute the expectation of RZ,X from Equation 6
and using the linearity of the expectation:

EZ,X [RZ,X(γ̂p, γ)] =σ2
ε

d∑
k=1

EZ,X

[[
D +DZTXS−1XTZD

]
k,k

]
From papers [2, 3], we know that:[

D +DZTXS−1XTZD
]
k,k

Dkk
=

1

1−B

where B ∼ Beta(p/2, (n− d− p+ 1)/2). As such, the expected risk becomes:

EZ,X [RZ,X(γ̂p, γ)] =σ2
ε

d

n− 1

(n− d− 1)

(n− d− p− 1)
(7)

The expected risk of the model without covariate is much simpler to compute
and is simply equal to σ2

ud/(n− 1). The covariates are expected to be useful if
the expected risk is lower when using them:

EZ,X [RZ,X(γ̂p, γ)] < EZ [RZ(γ̂0, γ)]

σ2
ε

d

n− 1

(n− d− 1)

(n− d− p− 1)
< σ2

u

d

n− 1

p

n− d− 1
< 1− σ2

ε

σ2
u

=
SNR

SNR+ 1
(8)
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Where SNR = (σ2
u − σ2

ε)/σ
2
ε is the signal-to-noise ratio of the covariates and

1 − σ2
ε/σ

2
u is the proportion of the variance of U explained by the covariates.

This inequality shows that the benefit of using covariates is a trade-off between
degrees of freedom (the number p of covariates) and their variance explained.

This result is consistent with the limiting result in [1] showing that the risk
of standard linear regression is lower than the risk of the null model if p/n <
SNR/(SNR + 1) when n, p → ∞ and p/n < 1. However, the current result is
particularly interesting in a clinical setting. Clinical studies often have limited
numbers of patients for ethical reasons and our results show that these limiting
results still apply in this context.

In a real clinical setting, the prognostic of patients is explained by numerous
factors and most of these factors will have a very low SNR [4]. From Equation 8,
numerous covariates and low SNR are not compatible. Adjusting for a large
number of covariates, p, is only possible if the SNR is also large. This is why it
is often recommended to limit the number of covariates in clinical trials.

As a solution, J. Tukey proposed 30 years ago the use of composite covari-
ates [4, 5]. The idea is to combine several covariates (while guessing their impor-
tance) into one composite covariate to improve the adjustment without paying
the cost in degrees of freedom. However, this approach has not been used in
practice and its effectiveness is difficult to assess. The objective of the next
section is to propose a new perspective on this old idea using machine learning
and the recent random matrix theory results to estimate the predictive risk of
the estimators. In particular, this old idea can be framed as transfer learning.

5 Transfer learning

Transfer learning is commonly described as a method where a model developed
for one task is reused to improve the performance of a model on another related

task. Here, we propose to learn a model φ̂(X) = β̂TX using previous indepen-

dent data and to use the model’s prediction Ŵ = φ̂(X) as a covariate to improve

the estimation of γ. Using Ŵ allows to transfer the knowledge extracted from
independent data to avoid having to learn both β and γ on the same study.

Y =γZ + αŴ + εw

The covariates X are usually known factors influencing patient prognosis. They
are not specific to the treatment or condition studied. Thus, φ̂(X) is a prog-

nostic model and Ŵ the patient’s prognostic score. While adjusting for patient
prognostic is relevant, reestimating β in small studies is not of primary interest.
Therefore, we intend to leverage available historical data of possibly a much
larger sample size m than n the number of patients available to estimate γ.

As Ŵ is estimated, the error term εw now accounts for both the prediction
error on φ̂ and the error term of the initial model, ε. As φ̂ is estimated from
independent data, the two parts of εw are independent. We thus have:

σ2
εw =αRX(β̂, β) + σ2

ε
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where RX(β̂, β) is the predictive risk of the prognostic model trained on in-

dependent data. The weight of Ŵ in the model is denoted α and has an ex-

pected value of Var(βTX)/(Var(βTX)+RX(β̂, β)). Then, it is easy to show that
σ2
ε ≤ σ2

εw ≤ σ2
u. These lower and upper bounds are respectively reached when

the predictive risk on β̂ is 0 and ∞. When RX(β̂, β) → 0 the prognostic model
is perfect α → 1 and σ2

εw → σ2
ε . When the risk becomes large, the usefulness

of Ŵ is low, α → 0 and σ2
εw → σ2

u. The expected risk of γ̂w can be computed

using the Equation 7 when there is only one covariate (Ŵ ):

EZ,X [RZ,X(γ̂w, γ)] =σ2
εw

d

n− 1

(n− d− 1)

(n− d− 2)
≤ EZ [RZ(γ̂0, γ)]

(n− d− 1)

(n− d− 2)

As we can see, the expected risk of γ̂w is not directly impacted by the number of
covariates, p. With the bounds σ2

εw , we can conclude that the use of a prognostic
model is safe in terms of risk. Indeed, even if the prognostic model dramatically
fails, the expected risk remains bounded and only marginally increases by a
(n− d− 1)/(n− d− 2) factor as compared to the model without covariate. This
multiplicative factor rapidly becomes negligible when n increases. In contrast,
the risk of γ̂p is not bounded and depends on p the number of covariates.

Another advantage of this formulation is to decouple the estimation of γ
and β. The estimation of γ will remain unbiased as long as φ̂ is estimated
from independent data. As such, we can use any machine learning approach. In

particular, we could select an approach minimizing the predictive risk, RX(β̂, β),
regardless of its bias. For example, we could use a ridge regression which has
a lower predictive risk than a standard linear regression [1]. In practice, this

risk RX(β̂, β) could be estimated using cross-validation or external data. Or,
we could approximate it with the limiting risk when n → ∞ using the random

matrix theory [6, 7, 1]. RX(β̂, β) can then be used to compute the expected risk
of γ̂w when using the transfer learning from historical data. This expected risk
will be lower than the classical approach if σ2

εw < σ2
ε(n− d− p− 1)/(n− d− 2).

It should be noted that many machine learning algorithms are proven to be
consistent and thus converge in probability to the true value ([8, 9, 6]). This

means that the risk, RX(β̂, β), will converge in probability to 0 if m the number
of patients used to fit the prognostic model tends to infinity with p/m → 0. As
such, if there is enough historical data, the lower bound on the expected risk of
γ̂w can be reached and we have:

EZ,X [RZ,X(γ̂w, γ)] = EZ,X [RZ,X(γ̂p, γ)]
(n− d− p− 1)

(n− d− 2)

The expected risk when using a prognostic model will be better than the model
with the p covariates by a factor (n−d−p−1)/(n−d−2). When p is large or n
is small, the benefit of the transfer learning will be large and could be performed
even if φ̂ is not perfect or trained on a large dataset. In some simulations, the
transfer learning was better even when n ≈ m.

Of note, this section was written assuming the covariates to be linear but

it is not strictly needed. One can trivially replace Ŵ = β̂TX by Ŵ = φ̂(X).
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The only difference is that the initial linear model with p covariates will not be
able to correctly adjust for the non-linearities, further increasing the advantage
of using a non-linear prognostic model trained from independent data.

6 Discussion and conlusion

In this paper, we propose a new perspective on an old problem: how to optimize
the use of covariates/data to estimate some parameters of interest when the
number of samples, n, is limited. This problem is often encountered in clinical
trials when estimating the treatment effect from a limited number of patients
while using many prognostic variables.

The proposed approach uses external data to fit a prognostic model using
machine learning. The prognostic model predictions can then be used in the
adjustment to improve the estimation of the parameters of interest. Assuming
isotropic normally distributed covariates, we were able to compute the expected
predictive risk of using the covariates or a prognostic model highlighting the
similarity with limiting results (when n, p → ∞) built on the recent advance
in random matrix theory [1]. In particular, when enough external data are
available, we showed that the use of a prognostic model can greatly improve the
predictive risk. Furthermore, the estimation of the parameters of interest will
remain unbiased and the predictive risk will only be marginally increased even
if the prognostic model dramatically fails to predict anything.
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