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Abstract. The prevalence of stroke-induced disability drives research
in motor imagery Brain-Computer Interfaces (BCIs) for rehabilitation.
Closed-loop systems using traditional decoding models prevail but deep
learning advances in single-trial offline decoding offer promises. How-
ever, transferring methods from offline to online decoding poses chal-
lenges. To address this, we propose a new approach to tune existing
offline deep learning models towards online decoding, outperforming tra-
ditional pipelines without the need for subject-specific calibration data.
Our proposed method is a step towards calibration-free BCIs that enable
immediate feedback and user learning.

1 Introduction

Globally, stroke stands as a primary contributor to enduring disability among
adults. An increasing body of evidence indicates the retention of brain plastic-
ity in chronic stroke patients, suggesting the possibility of recovery for affected
limbs [1, 2]. Henceforth, different rehabilitation strategies have been investi-
gated, including motor imagery Brain-Computer Interfaces (BCIs) [3, 4]. Motor
imagery, the process of movement imagination without execution, shares neural
mechanisms with actual movements [5]. This type of BCI is suitable for use with
both healthy subjects and severely paralyzed patients.
One major aspect in BCIs for clinical use is the feedback provided to the user
for the purpose of self-regulation [2, 6]. BCIs with feedback are also referred to
as closed-loop or online systems, whereas systems without feedback are labeled
offline. Online systems typically decode multiple short and overlapping win-
dows within a single trial to provide continuous feedback, while offline decoders
usually classify entire trials at once. To date, feedback is mostly delivered by
traditional methods such as Common Spatial Patterns (CSP) combined with
Linear Discriminant Analysis (LDA) or Support Vector Machine (SVM) classi-
fiers [1]. Only a very limited number of approaches [7, 8] employ deep learning
models for online classification with moderate success compared to traditional
methods [1]. This is contrary to the developments in single-trial decoding, where
deep learning has mostly overtaken traditional methods [9]. We argue that this
is due to the naive transfer of deep learning methods from offline single-trial
decoding to online decoding as evidenced in [7, 8].
In this work, we propose a new method to tune existing deep learning models to-
wards online decoding to enable efficient training and deployment. We show that
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a simple deep learning model can outperform a traditional CSP+LDA combina-
tion without the need for any subject-specific calibration data by leveraging data
from other subjects. Being able to immediately provide patients with feedback
facilitates user learning and opens up new possibilities for rehabilitation.

2 Method

2.1 Dataset

We employ the large EEG database [10] recently published. This dataset con-
tains EEG data from 87 subjects performing a binary (left hand vs. right hand)
motor imagery task recorded with 27 electrodes. We exclude 8 subjects due to
artifacts and missing data, leading to effectively 79 subjects. For each subject
there are 120 trials per class, recorded in 6 runs. Each trial lasts 8 seconds
featuring a cue appearing after 3 seconds, preceded by a fixation cross and an
auditory signal. The cue is presented for 1.25 seconds, followed by 3.75 seconds
of visual feedback. The first two calibration runs were recorded with sham feed-
back and the last four with real feedback, provided by a decoder consisting of
CSP and LDA trained on the data from the first two calibration runs.
The feedback is given based on the the last second of EEG data and updated with
a frequency of 16Hz. Since user feedback is provided from 4.25 s after trial onset,
only the data from 3.25 s to 8 s is used. This results in (4.75 s−1 s)·16Hz+1 = 61
windows per trial with a 15

16 = 93, 75% overlap between consecutive windows.
For preprocessing, we employ the same 5 - 35Hz bandpass filter for all subjects
and downsample the data from 512Hz to fs = 256Hz.

2.2 Model adjustments

As discussed in [1], current deep learning models do not outperform traditional
methods in online decoding despite their advancements in single-trial decoding.
We argue that this is at least in parts due to the naive transfer of methods from
single-trial decoding to online decoding. We propose a new method to tweak ex-
isting deep learning models towards online decoding which is applicable to any
convolutional architecture. To showcase our method, we employ the simple yet
powerful BaseNet architecture [11] which is a modern evolution from ShallowNet
[12] and EEGNet [13].
As online decoding needs a high update frequency (e.g., fu = 16Hz), there is a
high overlap between consecutive windows (e.g., 15

16 ). This overlap is also present
in intermediate layers of a deep learning model as previously stated in [12]. In
[12], a ’cropped training’ strategy is used to stabilize and regularize the train-
ing of a model for single-trial decoding. Its idea is to decode multiple smaller
sliding windows within one trial to increase the number of training samples. As
this results in additional computational load, groups of neighboring windows are
decoded together and the intermediate convolution outputs are reused.
We employ a similar strategy, but match it with the online decoding require-
ments. Specifically, we tune the kernel ki and stride lengths si of the pooling
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Fig. 1: Second pooling layer of BaseNet.

layers in the model. We propose the following new strategy for 2 pooling lay-
ers: The first layer is used to downsample the original input from a sampling
frequency fs to an intermediate frequency finter =

fs
k1

with k1 = s1. For models
with only one pooling layer, this stage is dropped and finter = fs. For BaseNet
(2 pooling layers), we use fs = 256Hz, k1 = s1 = 8, finter = 32Hz. The second
pooling layer is then used to extract overlapping windows which fulfill the re-
quirements of the application (window length w and update frequency fu). Its
procedure for BaseNet is visualized in Figure 1. The kernel size k2 = finter ·w is
chosen based on the window length w. The stride s2 = finter

fu
depends on the up-

date frequency fu, which determines the overlap between consecutive windows.
Our approach is applicable to any number of pooling layers P , where the first
P − 1 layers are used for downsampling (ki = si) and the last one is used to
extract the windows. By re-parameterizing the pooling layers in this manner,
any model acquires the ability to decode both singular windows and sequences
of consecutive windows. Crucially, the prediction for a single window is solely
contingent upon that window and does not rely on any accompanying windows.
Decoding all windows of one trial jointly is computationally very efficient. Pass-

ing every window independently would need w·(fu·(t−w)+1)
t more operations. For

our dataset and setting, this corresponds to a factor of 1 s·61
4.75 s ≈ 12.84.

To stabilize training, we average the predictions of all windows of one trial before
backpropagation. This averaging minimizes the effect of possible outliers (e.g.,
due to artifacts) within one trial.

2.3 Training

2.3.1 Data split

Within-subject: We first train one model per subject on the two calibration runs
and test the model on the four online runs as done in [10]. Additionally, we
investigate how the amount of training data affects the model performance. To
do so, we use the first 1 - 5 runs for training and test only on the last run.
Cross-subject: We train one model on the data from 78 subjects and test on
the four online runs of the remaining unseen subject (leave-one-subject-out) and
repeat this for every subject (cross-validation). We either use the two calibration
runs or all 6 runs of the training subjects. Additionally, we vary the number
of training subjects by selecting a random subset of the 78 training subjects for
each test subject.
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2.3.2 Training procedure

We train all models with the training procedure described in [11]. We use an
Adam optimizer with a learning rate of 10−3 and train each model for 100
epochs using a learning rate scheduler with 20 warmup epochs. As the train-
ing process is stochastic (e.g., subject selection, data shuffling, weight initial-
ization and dropout), we train each model for five different random seeds and
report the average of these five runs. The complete source code is available at
https://github.com/martinwimpff/eeg-online.

3 Results and Discussion

Table 1: Average trial-wise accuracy [10] over all subjects, standard deviation
calculated between subjects.

Method training
subjects

training
runs

test
runs

test accuracy
(%)

w
it
h
in

-
su
b
je
ct

BaseNet 1 1 - 2 6 57.36± 12.40
CSP+LDA[10] 1 1 - 2 6 64.62± 17.27
BaseNet 1 1 - 5 6 65.82± 15.82
BaseNet 1 1 - 2 3 - 6 57.60± 11.60
CSP+LDA[10] 1 1 - 2 3 - 6 63.29± 15.82

cr
os
s
-

su
b
je
ct

BaseNet 10 1 - 2 3 - 6 62.19± 11.62
BaseNet 10 1 - 6 3 - 6 63.68± 12.41
BaseNet 20 1 - 2 3 - 6 64.27± 12.59
BaseNet 20 1 - 6 3 - 6 66.49± 13.25
BaseNet 78 1 - 2 3 - 6 67.80± 13.80
BaseNet 78 1 - 6 3 - 6 69.29± 13.70

The reported accuracies are trial-wise accuracies as in [10] and describe the
percentage of correctly classified trials. Since there are no other works employing
online classification with this dataset, we only compare our method against the
original results presented in [10].
Within-subject: The within-subject results are shown in the first part of Table
1 and in Figure 2a. Using the setting of [10] (i.e., only using the two calibration
runs for training), their method is superior as the number of training samples
is too low for deep learning models. This observation is supported by Figure 2a
which demonstrates a consistent improvement for BaseNet with the addition of
more training data.
Cross-subject: The cross-subject results are shown in the second part of Table
1 and in Figure 2b. As the algorithm in [10] selects a subject-specific frequency
band, it cannot be applied to the cross-subject settings. Surprisingly, our cross-
subject performance (using all subjects) is significantly above the within-subject
performance without using any subject-specific data. Using more training data
(i.e., using all runs of the training subjects) improves the trial-wise accuracy
by around 1.7%. The number of subjects used for training also influences the
performance as shown in Figure 2b. By only using the calibration runs of 20
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Fig. 2: Within-subject results (a) and cross-subject results (b) for different
amounts of training data. Black bars indicate the standard deviation between
subjects.

randomly selected subjects other than the test subject, our cross-subject setting
(64.27± 12.59) already performs at the same level as the within-subject setting
in [10], a notable achievement given the scarcity of large BCI databases.
Apart from looking at the average performance, we also investigated the number
of subjects who reached a performance level significantly (p < 0.05) above the in-
dividual chance level (> 56.25% for 160 test trials, see [14]). For [10], 40 subjects
were above this threshold, whereas for BaseNet (cross-subject, 78 training sub-
jects) 56 subjects (trained on the calibration runs) and 64 subjects (trained on
all runs) were above this threshold. This improved robustness between subjects
is further evidenced by the lower standard deviation of our method compared to
[10] (see Table 1). The inference time of BaseNet for one window is 2.15ms (Intel
i7-1195G7, 4 cores), making it computationally suitable for online decoding.
These results showcase not only the effectiveness of our proposed method, but
also provide insights on how EEG data can be decoded in real-time. Ultimately,
the choice of decoding algorithm depends on the data availability. With enough
data, deep learning is able to outperform traditional methods. Importantly, deep
learning might be better suited for cross-subject decoding which is promising as
it does not need any subject-specific calibration data. Apart from saving time,
such calibration-free decoders can be more efficient than their subject-dependent
counterparts. If a subject-specific decoder is built on bad data, the feedback does
not help the subject to elicit the proper brain activity [6]. As user learning is
an essential part of BCI deployment [1], we recommend calibration-free cross-
subject decoders over subject-dependent decoders. Future studies should inves-
tigate how to transfer knowledge across subjects effectively and how to adapt a
given subject-independent decoder towards the target subject over time [6, 15]
to allow mutual learning of user and decoder.

4 Conclusion

Our work introduces a novel approach to tailor BCI deep learning models to-
wards a specific decoding task by adjusting the existing pooling layers. Our
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method outperforms conventional approaches without using subject-specific data
by leveraging data from other subjects. This allows calibration-free decoding and
enables immediate user learning, a crucial part of BCI usage.
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