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Abstract. This tutorial provides an overview of machine learning
methodologies applied in distributed, federated, and non-stationary envi-
ronments. We focus on recent advancements and novel research contribu-
tions of the field. Key topics include data analysis and pattern recognition
for non-stationary environments, model compression, federated learning al-
gorithms, and privacy preservation. This tutorial aims to equip researchers
and practitioners with insights into current challenges and innovative so-
lutions in this dynamic field.

1 Introduction

Machine learning has evolved to accommodate the challenges posed by dis-
tributed and non-stationary environments, in particular to better address practi-
cal needs [1]. In these settings, data is often distributed across multiple locations,
requiring methods that ensure privacy and adapt to changes over time. This pa-
per provides a short comprehensive overview of the state-of-the-art techniques
and applications in these domains. We target the setting of federated learning
first as this constitutes one of the current key concepts to learn in distributed
environments with different clients without an exchange of possibly private train-
ing data among those clients. This setup meets demands as occur in relevant
application domains including self-driving cars, digital health, or smart manu-
facturing. Afterwards, we have a glimpse at two specific challenges which occur
in distributed learning scenarios and beyond: how to deal with distributional
shift which causes the necessity of client models to adapt to diverse and possibly
non-stationary data distributions? How to provide models which provably obey
privacy concerns as regards the observed training data?

2 Distributed and Federated Learning

Federated Learning (FL) is an innovative approach to train machine learning
models on decentralized data, first introduced by researchers from Google in
2016 [2]. Unlike traditional centralized methods, FL enables multiple clients to
collaboratively train a model while keeping their datasets local, thereby preserv-
ing data privacy and security.

Definition 1 (Federated Learning). Consider a set of N clients, each with
a private dataset relevant to a shared learning task. The objective is to train
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a global model M that minimizes the error on an objective function E in a
distributed manner. The FL process typically involves the following steps:

1. Model Initialization: An initial model is distributed to all clients.

2. Local Training: Each client Ci updates the model Mi using its local dataset.

3. Model Aggregation: A central server aggregates the locally updated models
Mi into a global model M , which is then redistributed to the clients.

The decentralized approach of FL offers several advantages:

• Privacy Preservation: Data remains on local devices, aligning with regu-
lations such as the GDPR1.

• Efficient Resource Utilization: The method leverages the computational
power of clients.

• Access to Diverse and Heterogeneous Data and Information: It enables
learning from otherwise inaccessible and possibly heterogeneous data and
information distributed across clients.

FL can be distinguished along different dimensions. A prominent categorization
used in [3] refers to the split of users and features among clients and distinguishes
horizontal FL, vertical FL, and Federated Transfer Learning. Here, horizontal
FL refers to a distribution of data with overlapping features but different users
among clients (e.g. different probes); vertical FL refers to a distribution of differ-
ent features but the same users along clients (e.g. different sensors); FTL refers
to a small overlap of both, features and users among clients.

An alternative categorization was suggested in [4] with four groups, which
distinguishes FL techniques along the challenges and desired features: Aggre-
gation optimization, Heterogeneous federated learning, Secure federated learning,
Fair federated learning. Here, aggregation refers to the way in which the indi-
vidual models learned by each client are summarized. Prominent approaches
average along weights or feature, for example. Heterogeneous FL refers to the
form of heterogeneity which can be dealt with by the specific FL approach, such
as differences in the model type or the underlying data distribution considered
among clients. Secure FL refers to strategies which guarantee a correct result in
the light pf possibly malicious clients; these might attack the results by targeting
its functionality (e.g., backdoor attacks or model poisoning), or its privacy (e.g.,
using gradient information to uncover individual data from the communication
schemes). Fair FL aims at a global model which takes into account the interest
of all clients involved in the learning scheme in a suitable way, i.e., it is fair to
all clients. This notion aligns with trends in processing large-scale community
data and complies with ethical AI guidelines2.

1https://gdprinfo.eu/
2https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
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Other surveys on FL distinguish further relevant aspects [5] such as the ap-
plicable individual machine learning models, the involved privacy mechanisms,
or the used communication architecture, among others. FL has been used in var-
ious applications [4] and is implemented in different frameworks, like FLOWER
[6], PySyft [7], FATE [8], TensorFlowFederated [9], or OpenFL [10].

Recent advancements

While FL enhances privacy and reduces data transfer costs, it also introduces
unique challenges. As recent deep learning is often based on fine-tuning of foun-
dational deep learning models rather than training from scratch, the suitability
of federated learning strategies for optimization of foundational models consti-
tutes an active area of research [11]. Some challenges which occur in this context
concern communication and computation efficiency as it is unclear which parts
of a model (including prompt engineering for LLMs) to adapt when finetun-
ing a deep architecture. Federated model pruning strategies, for example, can
significantly increase the efficiency of FL, for example [12].

Another line of research deals with the enhancement of FL technologies by
components of explainability, as is required for trustworthy machine learning
models [13]. Recent approaches target efficient FL for natively explainable mod-
els [14]. Ongoing work demonstrates a possibly limited explainability for privacy
preserving FL approaches [15].

When dealing with non-stationary data, FL faces a number of additional,
dedicated challenges, in particular Data Distribution Shifts and Drifts. Sine
each client device may have its own distinct data distribution, these individual
distributions can change over time. This non-stationarity makes it difficult for
the global model to generalize across all devices since the model may encounter
drastically different data patterns during each training round. For distributional
shift, work on transfer learning could be used, but the resource constraints on
the client make this a challenging task [16]. Another promising approach is
Personalized FL where clients are allowed to “customize” the global model in
order to better capture the peculiarities of their own dataset [17].

Unlike shift, concept drift occurs when the statistical properties of the target
variable, which the model is predicting, change over time. In a federated set-
ting, this drift might be different across various clients, leading to models that
become outdated quickly if not continuously adapted. Addressing these chal-
lenges requires developing adaptive algorithms capable of learning from changing
data distributions, ensuring robust model aggregation techniques, and leverag-
ing techniques like continual learning [18], statistical control measures [19] and
transfer learning [1, 20] to maintain model performance over time.

Marfoq recently formalized the challenge of federated learning for separate
data streams and provided a theoretical analysis thereof [21]. Currently, there
has been a notable advancement in the field, such that Federated Learning has
been extended to handling of non-independent and identically distributed (non-
i.i.d) data (potentially still in static, batch processing) [22]. For a more general
overview we refer to [23, 4].
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Contributions in the special session

The work in [24] focus on sampling strategies from federated streaming data,
addressing challenges in data heterogeneity and model accuracy. The session
also includes a novel Personalized Federated Learning approach [25] based on
Prototype Learning that highly reduce the communication cost while having a
performance close to the state-of-the-art.

3 Non-Stationary and Dynamic Environments

Non-stationary environments present significant challenges for machine learning
models, as they require adapting to changes in the underlying data distribution
over time. In FL, this may affect individual clients, but it constitutes a more
general challenge for global models in real environments, as one may not any
longer assume that data are independent and identical distributed (i.i.d.). For-
mally, learning takes place based on an underlying family of distributions Dt,
where t refers to the current time point, and Dt1 “ Dt2 might hold for at lest
two given time points t1 “ t2, i.e., concept drift occurs. Drift might manifest
itself in a change of the input distribution, the posterior distribution, or any
representation of features (see e.g. [26, 27] for a detailed recent discussion).
Hence the current model might become invalid either because there does not
exist a model fitting both Dt1 and Dt2 , or because the variability of Dt2 cannot
easily be predicted based on Dt1 . Key challenges of learning in non-stationary
environments are:

• Concept Drift: Concept drift refers to change of the underlying distri-
bution Dt with t. Drift can be gradual or abrupt and it poses a significant
challenge in maintaining model accuracy. Challenges include concept drift
detection, i.e., localization of drift in time, localization of concept drift in
space [26], and explanation of concept drift [28].

• Real-time Adaptation: Various incremental learning technologies have
been proposed which are capable of model adaptation in the presence
of concept drift, ensuring that models remain relevant and effective [29].
Thereby, models must be able to update continuously or periodically to
incorporate new data patterns based on limited memory. Further, as non-
stationary environments often require real-time or near-real-time adapta-
tion to changes, efficient incremental approaches which might be imple-
mented on the edge become particularly interesting [30]. While many
approaches rely on supervised information, unsupervised learning models,
which estimate label values from the context, become of increasing impor-
tance in autonomous learning scenarios [31].

• Data Scarcity and Imbalance: In dynamic environments, data scarcity
and imbalance can exacerbate the challenge of learning from non-stationary
data. Certain data patterns may become infrequent or rare, making it
difficult for models to learn or generalize effectively [32].
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• Model Evaluation and Validation: Traditional evaluation methods
may not be suitable for non-stationary environments, as they often rely
on static test datasets that do not reflect the dynamic nature of the en-
vironment. In supervised incremental learning, evaluation is often based
on continuous evaluation strategies such as the interleaved train-test-error
[29]. Yet evaluating a suitable model plasticity and stability is challenging,
and alternative evaluation schemes have based on data representation, for
example, have been investigated [33].

In this context, various techniques such as online learning, ensemble methods,
and adaptive algorithms play a crucial role in managing non-stationary data
effectively. Leveraging transfer learning and continual learning approaches can
help models adapt to non-stationary environments by transferring knowledge
from previous tasks or experiences. These techniques enable models to retain
useful information while adapting to new data [34, 35, 36, 37].

Contributions in the special session

Feature learning is a crucial part in dynamic environment with particular chal-
lenges due to the non-stationarity of the underlying data distributions. The
session includes two papers addressing this field. In [38] feature learning for
time series is considered in detail and a new type of discriminative features is
suggested. Adapting to concept drift is crucial for maintaining model perfor-
mance. In the work of [39] the fine-structure of drifting features is explored,
providing insights into feature stability and adaptability.

4 Data Privacy and Security

Ensuring data privacy and security is paramount in federated learning environ-
ments and beyond. Mathematically founded privacy concepts and secure aggre-
gation are key techniques used to protect sensitive information. Three popular
techniques are commonly employed in FL techniques, often in combination, to
achieve this goal:

1. Homomorphic Encryption allows computations on encrypted data with-
out decryption. An example approach is additive homomorphism [40].

2. Differential Privacy [41], limits information leakage during learning by
ensuring that small changes in the training dataset do not significantly af-
fect the model’s output. This technique prevents attackers from extracting
precise individual data by introducing controlled noise or using complex
compression techniques [42].

3. Secure Model Aggregation is the most prevalent technique, where the
global model is trained by aggregating model parameters from all clients,
thus preventing the disclosure of original data. A notable deep learning
approach in this domain is described in [43].
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One may also use multi-task learning, where local models are trained individu-
ally and subsequently combined [44]. Additionally, blockchain technologies can
securely aggregate local model parameters [45]. A more recent overview and
proposal is given in [46].

Contributions in the special session

Schubert and Villmann investigate in [47] vector quantization methods to en-
hance privacy in federated settings, offering promising results for secure model
training.

5 Applications of Machine Learning in Federated Settings

Various applications benefit from federated learning approaches, including health-
care, finance, and environmental monitoring. Some overview papers can be found
here in [48, 49].

Contributions in the special session

Case Study: Federated Learning for Earth Observation The authors of [50]
demonstrate the application of federated learning in semi-supervised environ-
ments for earth observation data, highlighting the potential for scalable and
privacy-preserving analytics.

Motion Classification via Electromyography Also in the medical domain dy-
namic and non-stationary data are an important source of information. In [51]
a few-shot learning approach for motion classification using electromyography is
presented, showcasing the versatility of federated learning in diverse domains.

6 Conclusion and Future Directions

Machine learning in distributed, federated, and non-stationary environments
continues to evolve, driven by the need for privacy-preserving and adaptive mod-
els. In particular we may see the convergence of different subfields to better ad-
dress application constraints. Future research should focus on improving model
robustness, communication efficiency, and privacy guarantees which are partic-
ular challenging in non-stationary environments and with ressource constraint
devices.
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[34] Andrés L. Suárez-Cetrulo, David Quintana, and Alejandro Cervantes. A survey on ma-
chine learning for recurring concept drifting data streams. Expert Systems with Applica-
tions, 213:118934, 2023.

54

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  



[35] M. Heusinger. Learning with High Dimensional Data and Preprocessing in Non-
Stationary Environments. PhD thesis, Universität Bielefeld, Bielefeld, 2023.

[36] Michiel Straat, Fthi Abadi, Zhuoyun Kan, Christina Göpfert, Barbara Hammer, and
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