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Abstract. By leveraging the SOM algorithm and the extensive epige-

nomic data from TCGA, this work aims to suggest a valid approach to

explore the relationships between epigenetic alterations and PCPG patho-

genesis. Additionally, the methodological approach presented here lays the

foundation for a potentially valuable analysis tool that can be applied to

other cancer types and epigenetic research.

1 Introduction

Pheochromocytomas and paragangliomas (PCPG) are rare neuroendocrine tu-
mors that arise from neural crest-derived chromaffin cells. These tumors can
excessively secrete catecholamines, which can lead to hypertension, cardiac ar-
rhythmias and other clinical symptoms. Despite advances in diagnosis and treat-
ment, significant challenges remain in understanding the underlying biology of
these tumors. Epigenetic disregulation, and specifically changes in the methy-
lation patterns of DNA [1] have emerged as important molecular mechanisms
involved in tumor generation. DNA methylation is a covalent modification that
is often associated to gene silencing and may play a key role in activation or
inhibition of signaling pathways involved in the development of different can-
cer types [2]. In this work we propose to analyze the methylation profiles of
more than 390K valid CpG sites in 187 PCPG samples using the self-organizing

map (SOM) algorithm to obtain 187 component planes that are visual epige-
netic signatures of the PCPG tumors. We arranged these SOM planes spatially
according to their methylation similarities, and labeled the tumors presenting
mutations related to pseudohypoxia conditions, involved in PCPG development
and progression. The results reveal cluster structure for these tumors, providing
evidences of epigenetic mechanisms involved and suggesting our approach as a
complementary analysis tool.

∗This work is part of Grant PID2020-115401GB-I00 funded by MCIN/AEI/
10.13039/501100011033. The results shown here are based upon data generated by the TCGA
Research Network: https://www.cancer.gov/tcga.
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2 Methods

2.1 The SOM algorithm

The self-organizing map (SOM) [3] can be described as a nonlinear, smooth
mapping of a high-dimensional input space onto a low-dimensional output space,
typically meant for visualization. It consists of S units where each unit i is
associated to an r-dimensional prototype vector mi in the input space and a
position vector on a low dimensional grid, gi, in the output space. The SOM
algorithm trains the prototypes mi to learn the distribution of the input data
points xk ∈ R

r, while preserving the topology defined by the gi. It can be
divided in two stages: a competitive stage, where the closest prototype mc to
the input vector is obtained:

c = argmin
i

∥x−mi(t)∥ (1)

and a cooperative stage, where mc but also its neighbor prototypes are adapted

mi(t+ 1) = mi(t) + α(t)hci(t)[x−mi(t)] (2)

being α(t) the learning rate and hci(t) a neighborhood function between units
c and i, which states the amount of adaptation for units that are close to the
winner in the topology defined by the gi coordinates. A common choice is
hij = exp

[

−d(gi,gj)/σ
2
]

, that measures the gaussian neighborhood between
units i and j in the output space, being d(·, ·) generally a L2 or L1 distance.

2.2 Dealing with large number of samples

The SOM training algorithm involves the computation of distances from the
n input samples to the S prototypes. When n is very large —in methylation
data n may be in the order of 105 CpG sites— the SOM algorithm becomes
computationally unaffordable. In this work, the batch version, more stable and
computationally efficient was used to obtain the prototypes mi:

c(k) = argmin
i

∥x(k)−mi(t)∥, mi(t+ 1) =

∑

k hc(k)i(t) · x(k)
∑

k hc(k)i(t)
(3)

To overcome memory requirements, the prototypes can be updated at each epoch
using (3) for batches of a smaller size nb, by randomly sampling with replacement
from the original dataset, and then averaged with an exponentially weighted
moving average (EWMA):

m′

i(t) =

∑nb

k=1 hc(k)i(t) · x(k)
∑nb

k=1 hc(k)i(t)
mi(t+ 1) = λmi(t) + (1− λ)m′

i(t) (4)

For sufficiently long number of epochs, this bootstrap approach accurately ap-
proximates the input data distribution and yields a stable convergence allowing
to trade memory demand for iterations in large data samples.
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3 Results

3.1 The SOM for epigenetics data analysis

The methylation data under analysis involves a large dataset X ∈ R
n,m with

n = 391529 methylation levels (β values) of CpG sites, and m = 187 PCPG
samples from the TCGA database 1. Prior to SOM training, the β values were
transformed using rank normalization [4] to obtain a uniform equalized his-
togram of methylation values. Inspired in [5], the training of the SOM is done
shifting the usual role of samples and attributes, so the bases are considered as
samples and the tumors are considered as attributes. We trained a 50×50 SOM2,
resulting in S = 2500 codebooks mi, with 187 methylation values each. Each
codebook can be seen as a “prototype CpG base” that is indeed an aggregation

representing a cluster of CpG sites with similar methylation patterns.

3.2 Component planes as epigenetic signatures

The k-th tumor, in turn, may be represented by a component plane, in this case
a 50×50 image obtained assigning a color according to a color scale for the k-th
component of the 2500 prototypes mi, at the positions of the grid nodes gi in
the 2D visualization space. The resulting component planes, shown in Fig. 1,
are composed of the aggregated methylation levels of the prototypes for the 187
tumors each resulting, thereby, in an “epigenetic signature” of a tumor composed
of 2500 methylation values. Since the number of units S = 2500 is much smaller
than the number of CpG sites, n = 391529, this is a form of dimensionality
reduction achieved through aggregation. The epigenomic signature we get on
each component plane is a smoothed portrait of the methylation activity of a
tumor, averaging out detailed variations and preserving the main trends.

Interestingly, the regions in the planes represent sets of CpG sites —and the
genes to which they belong— with similar methylations across the m tumors.
Thus, they can also be interpreted as epigenetic maps of gene locations according
to their methylation activity. As a matter of sample, in Fig. 2, the black points
represent the location of CpG sites from protocadherin genes. This fact can be
used to compare and analyze genes in terms of epigenetic activity.

3.3 Visualization of tumors by similar epigenetic behavior

The m component planes can be treated as feature vectors describing the tumor
samples. Using a dimensionality reduction algorithm, such as the t-SNE algo-
rithm [6] we can display the tumors spatially organized in terms of similarity
of their component planes, as shown in Fig. 2. After testing several perplexity
values we finally considered a low value (p = 5) due to the relatively small total
sample size (187), and also to reveal detail of clusters with a small number of

1GDC TCGA Pheochromocytoma & Paraganglioma (PCPG); Illumina Human Methylation
450 DNA methylation (available at Xenabrowser https://xenabrowser.net/datapages/)

2Full code and experiment parameters to reproduce the results available in https://github.

com/gsdpi/SOM-DNA-Methylation

717

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  

https://xenabrowser.net/datapages/
https://github.com/gsdpi/SOM-DNA-Methylation
https://github.com/gsdpi/SOM-DNA-Methylation


TCGA-WB-A81T-01A TCGA-WB-A81G-01A TCGA-WB-A815-01A TCGA-RW-A688-01A TCGA-SP-A6QF-01A TCGA-RW-A684-01A TCGA-WB-A818-01A TCGA-RW-A67X-01A TCGA-S7-A7WU-01A TCGA-WB-A81I-01A TCGA-P8-A5KD-11A TCGA-QR-A70T-01A TCGA-W2-A7HC-01A TCGA-RW-A68F-01A

TCGA-QT-A5XN-01A TCGA-P8-A6RX-01A TCGA-SR-A6MQ-01A TCGA-QR-A6GX-01A TCGA-QR-A703-01A TCGA-PR-A5PG-01A TCGA-RW-A67Y-01A TCGA-QR-A70C-01A TCGA-W2-A7HE-01A TCGA-WB-A80N-01A TCGA-SR-A6MX-05A TCGA-WB-A816-01A TCGA-W2-A7H5-01B TCGA-WB-A81A-01A

TCGA-S7-A7WM-01A TCGA-TT-A6YJ-01A TCGA-SR-A6MU-01A TCGA-QR-A6H4-01A TCGA-P8-A5KD-01A TCGA-S7-A7WN-01A TCGA-S7-A7X2-01A TCGA-QR-A6GS-01A TCGA-SR-A6MX-06A TCGA-XG-A823-01A TCGA-WB-A80P-01A TCGA-QR-A70Q-01A TCGA-TT-A6YK-01A TCGA-RW-A685-01A

TCGA-QR-A70A-01A TCGA-RW-A681-01A TCGA-WB-A81S-01A TCGA-QR-A6H5-01A TCGA-QR-A70K-01A TCGA-QT-A5XM-01A TCGA-RW-A68C-01A TCGA-RW-A689-01A TCGA-TT-A6YO-01A TCGA-PR-A5PH-01A TCGA-WB-A81D-01A TCGA-QR-A707-01A TCGA-RW-A67V-01A TCGA-WB-A81K-01A

TCGA-QR-A6H2-01A TCGA-PR-A5PF-01A TCGA-WB-A817-01A TCGA-TT-A6YN-01A TCGA-WB-A81R-01A TCGA-QR-A70V-01A TCGA-SR-A6MS-01A TCGA-QR-A70P-01A TCGA-S7-A7WL-01A TCGA-W2-A7H7-01A TCGA-RW-A7D0-01A TCGA-QR-A6GT-01A TCGA-W2-A7HA-01B TCGA-W2-A7HH-01A

TCGA-QR-A702-01A TCGA-QR-A7IP-01A TCGA-SP-A6QH-01A TCGA-QR-A708-01A TCGA-RX-A8JQ-01A TCGA-QT-A5XP-01A TCGA-QR-A70O-01A TCGA-SP-A6QK-01A TCGA-WB-A81F-01A TCGA-QR-A6GY-01A TCGA-QR-A700-01A TCGA-WB-A822-01A TCGA-P8-A5KC-01A TCGA-W2-A7HF-01A

TCGA-W2-A7UY-01A TCGA-QR-A706-01A TCGA-P7-A5NX-01A TCGA-QR-A70H-01A TCGA-RM-A68W-01A TCGA-SQ-A6I4-11A TCGA-QR-A6GO-01A TCGA-QR-A70G-01B TCGA-P8-A6RY-01A TCGA-QT-A5XK-01A TCGA-QR-A6H6-01A TCGA-WB-A81H-01A TCGA-RW-A68D-01A TCGA-QR-A70M-01A

TCGA-WB-A80K-01A TCGA-S7-A7WR-01A TCGA-QR-A70U-01A TCGA-WB-A821-01A TCGA-S7-A7WP-01A TCGA-S7-A7WT-01A TCGA-RM-A68T-01A TCGA-WB-A820-01A TCGA-QR-A70W-01A TCGA-SR-A6MT-01A TCGA-QR-A6GR-01A TCGA-WB-A81E-01A TCGA-QR-A70X-01A TCGA-WB-A81V-01A

TCGA-QT-A69Q-01A TCGA-S7-A7WV-01A TCGA-SQ-A6I4-01A TCGA-QR-A6GZ-01A TCGA-SR-A6MX-01A TCGA-WB-A80V-01A TCGA-W2-A7HB-01A TCGA-SR-A6MV-01A TCGA-QR-A70I-01A TCGA-QR-A7IN-01A TCGA-QR-A6GZ-05A TCGA-QR-A6GW-01A TCGA-SR-A6N0-01A TCGA-S7-A7WQ-01A

TCGA-RW-A68B-01A TCGA-QR-A6ZZ-01A TCGA-WB-A81W-01A TCGA-W2-A7HD-01A TCGA-RT-A6Y9-01A TCGA-SQ-A6I6-01A TCGA-WB-A81N-01A TCGA-QT-A5XJ-01A TCGA-RW-A68G-01A TCGA-WB-A80Q-01A TCGA-QR-A70R-01A TCGA-RT-A6YC-01A TCGA-WB-A80M-01A TCGA-RW-A686-01A

TCGA-WB-A80L-01A TCGA-SP-A6QD-01A TCGA-QR-A705-01A TCGA-SR-A6MY-01A TCGA-WB-A80Y-01A TCGA-QR-A6H3-01A TCGA-RW-A8AZ-01A TCGA-QR-A70N-01A TCGA-TT-A6YP-01A TCGA-SR-A6MZ-01A TCGA-QT-A5XL-01A TCGA-QR-A70J-01A TCGA-SP-A6QG-01A TCGA-RW-A7CZ-01A

TCGA-SP-A6QC-01A TCGA-P7-A5NY-05A TCGA-S7-A7WW-01A TCGA-SP-A6QI-01A TCGA-SR-A6MR-01A TCGA-QR-A6GU-01A TCGA-SA-A6C2-01A TCGA-S7-A7X0-01A TCGA-WB-A81P-01A TCGA-RW-A68A-01A TCGA-QR-A70E-01A TCGA-WB-A81J-01A TCGA-S7-A7X1-01A TCGA-WB-A819-01A

TCGA-QR-A6H0-01A TCGA-WB-A81Q-01A TCGA-P8-A5KC-11A TCGA-S7-A7WX-01A TCGA-RW-A680-01A TCGA-P7-A5NY-01A TCGA-RW-A686-06A TCGA-WB-A81M-01A TCGA-QR-A6H1-01A TCGA-SP-A6QJ-01A TCGA-QR-A70D-01A TCGA-QT-A7U0-01A TCGA-QT-A5XO-01A TCGA-RT-A6YA-01A

TCGA-WB-A80O-01A TCGA-SR-A6MP-01A TCGA-RW-A67W-01A TCGA-S7-A7WO-01A TCGA-WB-A814-01A

0.0 0.2 0.4 0.6 0.8 1.0
methylation level (normalized rank value)

Fig. 1: Methylation component planes for the 187 PCPG tumors. Blue tones
reveal low methylation (β ≈ 0) and red tones represent high methylation (β ≈ 1).

tumors. As shown in Fig. 2, the t-SNE method arranges the tumors into groups
with similar methylation patterns, which can be visually confirmed by the simi-
lar component planes observed within each group. Noting that the proportion of
red areas (high methylation) over blue areas (low methylation) in the component
plane of a tumor sample is related to the overall level of methylation, a global
structure is also found in the map according to the overall methylation levels,
with a gradual distribution from low-methylated tumors on the left, to highly
methylated tumors on the right.

Also, the location in the t-SNE map of tumors with mutations in the VHL,
SDHx, and EPAS1 genes, shown in Fig.3, provides interesting insights. Mu-
tations in these genes disrupt the normal regulation of the hypoxia-inducible
factor (HIF) pathway, leading to pseudohypoxic conditions that promote tumor
growth, angiogenesis, and progression of PCPG. SDHx appear grouped on highly
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Fig. 2: t-SNE map of methylation patterns. Methylation levels grow from left
to right.

methylated areas, while VHL and EPAS1 lay together in areas with intermedi-
ate methylation. It is known that VHL and EPAS1 are directly involved in the
HIF signaling pathway, while SDHx mutations indirectly affect HIF by loss of
function of SDH genes. This connection between pseudohypoxia patwhays and
methylation patterns, suggests that the proposed approach can be a complemen-
tary way of analysis.

4 Conclusions

In this paper we have proposed using SOM to visualize and reduce the dimen-
sionality of methylation data from PCPG tumors. The SOM component planes
act as methylation signatures that revealed relationships between the tumors’
epigenetic patterns and key genetic mutations like VHL, SDHx, and EPAS1.
This SOM-based approach integrating epigenetic and genetic data allows identi-
fying connections between the dysregulated methylation landscapes and genetic
signatures of PCPG. It demonstrates the potential of SOM analyses to gain
insights into the interplay of epigenetics and genetics in cancer, with potential
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Fig. 3: Location of VHL, SDHx, and EPAS1 in the t-SNE map of methylation
patterns

applications in biomarker discovery and personalized treatment development.
The possibility to represent tumors with mutations or other phenotypes on epi-
genetic behavior maps with the proposed approach can help in elucidating PCPG
molecular heterogeneity and subtypes, guiding targeted therapies.
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