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Abstract. In medical pathology, tumor grading is concerned with esti-
mating the risk posed by a tumor, based on its pathological features. One
way to infer risk scores is survival regression, i.e. using machine learning to
infer a score that predicts the remaining survival time of a patient. Unfor-
tunately, if applied naively, such a score is a mix of the intrinsic risk posed
by the tumor and other risk factors, like the progression of the tumor or
patient gender and age. We provide the first survival regression model that
disentangles tumor grading from undesired correlations, while retaining a
high degree of model interpretability, thanks to convex optimization, non-
negativity constraints, sparsity, and linearity. We evaluate the proposed
approach both on simulated and real-world data from N = 114 patients
at the University Clinic Aachen.

1 Introduction

To make a prognosis for a tumor patient, the tumor needs to be graded and
staged. Staging refers to estimating how far the tumor has already progressed
in its growth, whereas grading refers to an estimate of the risk posed by the
tumor due to its pathological characteristics, such as tumor cell counts or the
differentiation between tumor cells and healthy cells [1]. Formally, the density of
time until death of a patient can be described with a decreasing curve. Staging
refers to the time that has already passed, grading to the slope of the curve (refer
to Fig. 1). Typically, grading is performed by pathologists based on decision
trees that have been derived manually from empirical data. However, manually
deriving the most predictive tumor grading scheme can be challenging, especially
in case of multiple relevant pathological chracteristics that have to be combined.
Hence, it would be desirable to infer tumor grading schemes automatically, while
retaining interpretability for medical experts, conforming to bio-medical domain
knowledge, and ensuring that grading and staging are disentangled.

The most related branch of research is survival regression, which typically
estimate a linear score from the input features that predicts the remaining sur-
vival time of patients [2, 3, 4, 5]. Because the scoring itself is linear, the models
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Figure 1: Illustration of tumor grading versus staging: The grading s corresponds
to the slope of the probability density until time of death, whereas staging cor-
responds to the position on the time axis.

are interpretable to some degree. However, the parameters may be bio-medically
implausible and grading and staging remain entangled. In fact, the inferred risk
scores are likely to include many undesired correlations, such as with age or
gender. Hence, we propose a new algorithm for survival regression that takes
plausibility constraints and undesired correlations into account, which we name
decorrelated sparse survival regression (DSSR).

In detail, our contributions are three-fold: 1) we propose DSSR as a new
approach to automatically learn a sparse, linear tumor grading. We provide three
algorithms based on linear and quadratic programming as well as evolutionary
optimization. 2) In a simulation experiment, we demonstrate that DSSR is able
to disentangle tumor grading from tumor staging, whereas baselines from the
literature fail in that regard. 3) On real-world data from N = 114 patients, we
demonstrate that DSSR achieves sparser and more biologically plausible models
that generalize (slightly) better to new patients.

2 Method

Our goal is to derive a tumor grading scheme that is linear in input features
x⃗, sparse, biologically plausible, predicts the remaining survival time of patients
accurately, but avoids undesired correlations with features z⃗, such as staging
indicators, age, or gender. More precisely, let X ∈ RN×n be a matrix of n
features for N patients and let Z ∈ RN×m be the matrix of m indicators that
ought to be decorrelated from the grading. We wish to find sparse weights
w⃗ ∈ Rn that minimize correlations between the vector of risk scores s⃗ = X · w⃗
and any column of Z. We express this target via a linear program: minimize the
slack variable r under the side constraints r > s⃗T · z⃗k and r > −s⃗T · z⃗k, where
z⃗k is the z-normalized kth column of Z.

At the same time, we wish to maximize the concordance index [2] between
the risk scores s1, . . . , sN and the actual times until death t1, . . . , tN , meaning
the fraction of pairs (i, j) such that si > sj and ti > tj . Following the scheme of
support vector machines for survival regression [3], we translate the concordance
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target to a linear program, as well: we minimize the slack variables ϵi,j under
the side constraints si − sj + ϵi,j ≥ 0 and ϵi,j ≥ 0 for all (i, j) where ti < tj .

Our remaining targets are sparsity and biological plausibility. For the former,
we apply L1 regularization to w⃗. For the latter, we impose the side constraint
w⃗ ≥ 0. In other words, we assume that the features have been pre-processed
such that higher values correspond to higher assumed risk from a bio-medical
standpoint. In our real data, both categorial and ordinal features occur. For cat-
egorial features, we perform a one-hot coding. For ordinal features, we perform
a multi-hot coding, such that the kth level of an ordinal scale with K values is
encoded as the vector of k ones followed by K − k zeros.

Putting all components together, we obtain the overall linear program:

min
w⃗∈Rn,E∈RN×N ,r∈R

N∑
i=1

N∑
j=1

ϵi,j + λ1 ·
n∑

ℓ=1

wℓ + λ2 · r (1)

such that (x⃗i − x⃗j)
T · w⃗ + ϵi,j ≥ 1 ∀i, j : ti < tj

z⃗Tk ·X · w⃗ ≤ r ∧ −z⃗Tk ·X · w⃗ ≤ r ∀k
ϵi,j ≥ 0 ∀i, j
wℓ ≥ 0 ∀ℓ

where λ1 and λ2 are hyper-parameters controlling the L1 regularization and
decorrelation, respectively. We call this the linprog variant of DSSR.

Quadprog variant: We also consider a quadratic programming variant
where the slack variables are punished quadratically and the correlation term is

replaced with w⃗T ·XT ·
(∑K

k=1 ẑk · ẑTk
)
·X ·w⃗, i.e. the sum of squared correlations

to all columns of Z.
CMA-ES variant: Finally, we consider an evolutionary optimization scheme

via CMA-ES [6], where the fitness function is the concordance index minus the
regularization terms in (1).

3 Experiments

In the following, we compare our three variants of DSSR (linprog, quadprog,
CMA-ES) against several baselines from the literature. In detail, we consider
several accelerated failure time (AFT) regression models, namely Weibull, Log-
logistic, and Log-normal [4], as well as Cox regression [5], all implemented in
the lifelines software package [2]. For linprog, we use the scipy-linprog solver
[7], for quadprog the OSQP-quadprog solver, and for CMA-ES the reference
implementation of [6]. In all experiments, we set the L1 regularization strength
λ1 to 0.01 and the correlation regularization strength λ2 to 1. All experiments
were executed on a desktop machine with an Intel i9-10900 CPU and 32 GB
RAM. The source code can be found at https://gitlab.com/bpaassen/dssr.

Simulation experiment: To investigate whether DSSR is able to recover a
ground truth grading from observed times until death, we generated simulated
data following Fig. 1 to achieve a simple scenario where input features contain
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Table 1: Mean (± stdev.) concordance index and correlation between predicted
and ground truth risk scores for all models in the simulation experiment.

model concordance index score correlation

Weibull AFT 0.83± 0.02 0.54± 0.08
Log-Logistic AFT 0.83± 0.03 0.53± 0.08
Log-normal AFT 0.82± 0.03 0.57± 0.08
Cox 0.84± 0.02 0.52± 0.08

linprog 0.65± 0.04 0.97± 0.01
quadprog 0.65± 0.04 0.96± 0.01
CMA-ES 0.70± 0.04 0.92± 0.04

entangled information about grading and staging. For each patient i, 1) we
sampled a ground truth grading score si uniformly from the interval [0.1, 1].
2) We sampled days until death ti from the exponential distribution with rate
parameter λ = si

120 . 3) We computed a staging score δi as the actual time
until death minus the expected time until death in years, i.e. 1

365 · (ti − 120
si

).
4) We computed features x⃗i as two noisy copies of the ground truth grading
score si (grading features) and three noisy copies of the staging score δi (staging
features). The noise was Gaussian with std. 0.1. 5) We set z⃗i to the staging
features. We performed 10 repeats, simulating 200 patients as training data and
100 as test data each time.

Table 1 displays the results for all models on the simulated data in terms
of concordance index (center column) and correlation between predicted risk
score and ground truth grading score (right column). The baseline regression
approaches perform better in terms of concordance index, meaning they predict
the time until death more accurately. However, as expected, grading and staging
remains entangled, such that the predicted score correlate only moderately with
the ground truth. By contrast, all DSSR variants achieve lower concordance
index but much better correlation with the ground truth grading risk score.

Real-world experiment: The real-world data was obtained from N = 114
patients with bladder cancer at the University Hospital of RWTH Aachen. For
each patient, a biopsy of the tumor was performed and evaluated by a pathology
expert, yielding the feature matrix X. Further, staging indicators as well as age
and gender were recorded for each patient, yielding the matrix Z. Note that
follow-up data was only available for 87 patients, and time-of-death data only
for 30 patients, meaning that the data set was right-censored for most patients.

Table 2 shows the concordance index in five-fold crossvalidation. We observe
that no model manages to generalize well but DSSR variants perform slightly
better, especially CMA-ES. This is likely due to a low number of patients with
recorded time of death, leading to overfitting. In terms of correlation, DSSR
variants successfully avoid significant undesired correlations, whereas the base-
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Table 2: Mean (± stdev.) concordance index on the Aachen data in 5-fold
crossvalidation.

model concordance index

Weibull AFT 0.55± 0.09
Log-logistic AFT 0.52± 0.08
Log-normal AFT 0.53± 0.09
Cox 0.51± 0.10

linprog 0.56± 0.07
quadprog 0.58± 0.08
CMA-ES 0.64± 0.07
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Figure 2: Weights for the tumor budding count indicator of all models.

lines tended to correlate with one of the staging features (F-Zahl), as well as
patients’ age. The most striking differences can be observed in terms of the
learned parameters. Fig. 2 exemplarily shows the weights for the tumor bud-
ding count feature. From a bio-medical perspective, higher levels are deemed
more dangerous. However, because the parameters of the baseline models are
unrestricted, the risk score strongly fluctuates, sometimes yielding lower risk for
higher feature values. By contrast, the non-negativity constraints of DSSR yield
monotonously increasing risk scores, as desired.

In terms of training time (Fig. 3), we observe that the literature baselines
scale better in terms of data points N and comparably in terms of features n
but that CMA-ES has a particularly high constant factor (around 10s runtime).
The linprog variant of DSSR scales particularly badly with higher N , whereas
the quadprog variant remains competitive with literature baselines in terms of
training time.

4 Conclusion

We proposed a novel survival regression approach which avoids undesired cor-
relations and promotes interpretability via a sparse, non-negative linear model,
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Figure 3: Training times with respect to number of patients (left) and number
of features (right) for all algorithms.

which we name decorrelated sparse survival regression (DSSR). In a simulation
experiment, we found that DSSR is better able to disentangle tumor grading
from staging, compared to prior methods. On real-world data from N = 114
patients, we observed slightly better generalization performance, but mainly
sparser and more plausible models that avoided undesired correlations. We
tested three variants of DSSR, a linear programming one, a quadratic program-
ming one, and an evolutionary optimization. The CMA-ES variant tends to
achieve the best concordance but is less consistent across runs and tends to be
slowest. Hence, in practice, the linear or quadratic variants are recommended.

The main limitation of our study is that the generalization performance on
the real-world data set is only marginally better than random, indicating the
challenges in survival regression on smaller data sets. Future work should eval-
uate DSSR variants on a bigger data set with undesired correlation data, which
does not yet exist.
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