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Abstract.

Supervised online learning relies on the assumption that ground truth
information is available for model updates at each time step. As this is
not realistic in every setting, alternatives such as active online learning, or
online learning with verification latency have been proposed. In this work,
we assume that no label information is available after intitial training.
We argue that provided we can characterize the expected concept drift as
incremental drift, we can rely on a self-labeling strategy to keep updated
models. We derive a k-NN-based self-labeling online learner implementing
the presented self-supervised scheme and experimentally show that this
is an option for learning from incrementally drifting data streams in the
absence of label information.

1 Introduction

In many scenarios, data is arriving as a non-stationary data stream requiring
machine learning algorithms to adapt to the most recent data flexibly. As this
setting poses additional challenges to that of batch learning, where the entire
dataset is available, considerable research is dedicated to this assignment with
the majority considering supervised online learning as a setup [1]. Here, the
fundamental assumption is that after a model provides its prediction, the ground
truth becomes available for updating the model. As this is not realistic in many
real-world applications, some contributions focus on verification latency [2] or
alternative setups such as active learning [3] or semi-supervised approaches [4].

Mostly, these still assume that some ground truth becomes available. In
contrast, we are interested in online learning strategies which, after an initial
set-up phase, proceed without any label information. Here so-called concept drift
constitutes a particular challenge, i.e., if the underlying distribution changes and
initial models might become invalid. In this work we focus on the scenario of
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incrementally drifting data streams; we leverage self-labeling strategies similar to
those that have been proposed for semi-supervised learning in the batch setup [3,
5]. In particular, as an exemplary self-supervised learning strategy, we propose
a window-based k-NN classifier relying on certainty scores to decide whether its
predictions are used for updating the model.

This paper is structured as follows: After formulating the setup of supervised
online learning (Section 2.1), we analyze distributional changes in more detail
(Section 2.2), which leads to an alternative setting that assumes no ground truth
after an initial training phase (Section 2.3). In Section 3, we derive a simple
strategy to learn in this setting (Section 3). Finally, we will experimentally
evaluate the proposed method (Section 4) and conclude this work (Section 5).

2 Online Learning from Drifting Data Streams

We will first define the setup of supervised online learning and concept drift. Af-
terward, we will investigate how the signals we observe are composed to analyze
which components are drifting with which properties. Finally, we will propose
the setup of self-supervised online learning.

2.1 Supervised Online Learning

Let X ⊂ Rd be the feature, Y be the target space, and T the time domain.
A data stream S = ((Xi, Yi))

N
i=1 is a (potentially infinite) sequence of X × Y-

valued random variables. We assume that each sample (Xi, Yi) is observed at
some time point Ti ∈ T with Ti ≤ Ti+1 which determines their distribution,
i.e., (Xi, Yi) ∼ DTi

where Dt is a Markov kernel from T to X × Y. Drift
takes place if Dt ̸= Ds for t ̸= s, or equivalently, if Ti and (Xi, Yi) are not
independent [6]. The goal of supervised online learning is to infer an adaptive
model ht approximating the stream-generating distribution process Dt at each
time point t. This is usually done in the test-then-train setup, i.e., at time Ti a
new sample is arriving. First a prediction Ŷi = hTi−1

(Xi) is obtained, then hTi

is obtained by updating the model with (Xi, Yi).

2.2 Decomposing the Signal

We are interested in learning strategies without label information Yi. For ar-
bitrary, unknown drift, no valid learning strategies can exist. Hence, we first
have a closer look at different types of drift. Drift can occur in the quantity of
interest, the environmental impacts, or the measurement process. Formally, X
is a distortion of the value of interest X̃ induced by a (time-dependent) Markov
kernel Mt from X ×T to X which models measurement errors, i.e., X ∼MT (X̃).
A simple example is Gaussian noise Mt(x̃) = N (x̃, σ). In many scenarios X̃ is
not affected by drift throughout the stream but only Mt. As a practical example,
for hyperspectral cameras in a laboratory, the hyperspectral sensors are slowly
changing the mean, i.e. Mt(x̃) = N (x̃ + γ(t), σ) for some function γ depend-
ing on the camera only [7]. In many systems observing natural phenomena or
user behavior, seasonal patterns can be observed, e.g. water demands smoothly
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change with the seasons [8]. These types of drift are incremental drift as defined
by [1].

A key observation is that, provided the effect of the drift is smaller than
the signal strength induced by the model, incremental learning without label
information can rely on self-labeling strategies. Here we refer to stream-learning
algorithms which are based on fixed-size sliding windows, as these are often used
in practice [1]:

Theorem 1. Let X = Rd, T = R. Let γ : T → X be additive shift, i.e.
X = X̃ + γ(T ) and assume no other drift is present, i.e. Y ← X̃ → X ← T is
faithful. If γ is Lipschitz continuous with constant L then for any margin size
M > 0 the following relation of margins holds assuming the sliding window does
not contain observations that are more than w apart, i.e. |T − T ′| ≤ w:

P[∥X̃ − X̃ ′∥ ≤M + wL⇒ Y = Y ′]

≤ P[∥X −X ′∥ ≤M ⇒ Y = Y ′ | |T − T ′| ≤ w]

Sketch of proof. Since X = X̃ + γ(T ), by applying the triangle inequality and
Lipschitz continuity we can conclude P[∥X̃ − X̃ ′∥ > M + wL, ∥X −X ′∥ ≤ M |
|T − T ′| ≤ w] = 0. The statement follows.

Notice, that a generalization of this statement where γ is induced by general
(stochastic) differential equations is possible but beyond the scope of this paper.

2.3 Self-Supervised Online Learning

We consider the following self-supervised learning setup: The data stream S is
split into an initial development Sdev = (Xij , Yij )

Ndev
j=1 and deployment Sdep =

(Xij )
N
j=Ndep

part. During the development phase, a model is trained using the
usual test-then-train scheme, while at the deployment phase no ground truth is
available for updating the model anymore.

Theorem 1 implies that, if the classification model has a sufficiently large
hypothesis margin for a new sample within a data stream where the drift is
limited, the label induced by the model is correct with high probability. Based
on this fact, we propose to combine a window-based online learning scheme and
a self-labeling strategy which infers the label from the given model and adapts
the model accordingly. As a proxy for the hypothesis margin, we propose to rely
on model-specific certainty estimates of the prediction, as these relate to the
epistemic uncertainty of the model prediction, hence the margin [9]. In the next
section, we will derive a k-NN-based online learning algorithm together with
different certainty estimates. We chose a k-NN architecture because they are
particularly suitable when considering soft margins and have been successfully
applied for online learning tasks [10].

3 A Self-Teaching Online k-NN

We consider an online k-NN classifier with a fixed-size sliding window. At the
development phase, we train the model according to the test-then-train scheme,
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adding data as suitable. In the deployment phase, we rely on the model’s
predictions. As a baseline, the naive version simply updates the model with
(Xi, hTi−1

(Xi)) at each sample, disregarding the hypothesis margin. For a more
informed version, we use estimates of the classifier’s confidence in its predic-
tion [11]. We consider the following certainty scores:

c1(x, ŷ) =
1

k

∑
(x′,y′)∈Nk(x)

δ̃y′,ŷ

1 + d(x, x′)
(1) c2(x, ŷ) =

∑
(x′,y′)∈Nk(x)

δy′,ŷ
d(x,x′)∑

(x′,y′)∈Nk(x)

1
d(x,x′)

, (2)

where d is a distance, δy,y′ is the Kronecker delta, δ̃y,y′ := 1 − 2δy,y′ , and
Nk(x) is the k-neighborhood of x. Besides, we examine a version which explic-
itly relates to the margin by referring to the k closes samples with the same
(N+

k (x, ŷ))/different class (N−
k (x, ŷ)) compared to ŷ

c3(x, ŷ) =
1

k

∑
(x′,y′)∈N+

k (x)

1

1 + d(x, x′)
− 1

k

∑
(x′,y′)∈N−

k (x)

1

1 + d(x, x′)
(3)

While c1 and c2 only focus on the k-neighborhood of x, c3 considers the closest
k samples of the predicted and any other class thereby including some kind of
information on the margin between the samples in the neighborhood. In the
deployment phase, the model is only updated by (x, ŷ) if c(x, ŷ) > θ, where θ is
a hyper-parameter of the method.

4 Experiments

Datasets. We consider two datasets. The Spectra dataset contains hyperspec-
tral measurements of sugar and coffee which were collected under laboratory
conditions. We add incremental drift to the dataset by applying increasing in-
tensity shifts to the data. We model the drift realistically according to an anal-
ysis of hyperspectral data [7]. In total, we consider 56 data streams consisting
of 5,000 samples with 288 spectral bands as features.

Besides, we consider a dataset of pressure measurements from the L-Town [8]
water distribution network containing leakages or not (Leaks). Changing water
demands over the seasons inflict incremental drift in the environmental variable.
We simulate leakages in 764 positions. For each, we generate a stream where
we take the mean daily pressure at 29 sensors and randomly decide whether we
take examples from the leaky or non-leaky scenario for each day, resulting in 764
streams containing 365 samples each.

Setup We report the accuracies on Sdev for the proposed variants described
above and the following baselines: no update during deployment (lower base-
line), supervised online learning, and perfect policy, i.e. only update with cor-
rectly classified samples (upper baselines). Next to considering the naive version
where each prediction is used for updating, for the certainty-based methods, we
report the automatically estimated thresholds (optimal split found by decision
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Table 1: Accuracy on Sdep (mean±std. deviation)
of the experiments on all data streams

Method Spectra Leaks

No Learn 0.6431± 0.0223 0.5751± 0.0275
Supervised 0.9356± 0.0057 0.9397± 0.0498
Perfect Policy 0.9203± 0.0064 0.7425± 0.1626

Naive 0.8874± 0.0627 0.6295± 0.1463
c1 - auto 0.8973± 0.0454 0.6325± 0.1479
c2 - auto 0.8865± 0.0730 0.6183± 0.1371
c3 - auto 0.9076± 0.0294 0.6141± 0.1355
c1 - opt 0.9169± 0.0069 0.6870± 0.1470
c2 - opt 0.9174± 0.0066 0.6707± 0.1469
c3 - opt 0.9174± 0.0065 0.6679± 0.1421
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Fig. 1: Performance on Spectra
for different θ

tree of depth 1) and the results of the optimal threshold for each stream. For the
latter we consider the following thresholds θc1 , θc3 ∈ {−1,−0.975,−0.95, . . . , 1},
θc2 ∈ {0, 0.025, 0.05, . . . , 1} for each stream and report the best result, i.e. this
is an upper baseline assuming a mechanism to find the most suitable threshold
was available. All experiments use Euclidean distance and k = 51.

Results The results are summarized in Table 1. As to be expected, for both
datasets we obtain the worst accuracies if we perform no updates during Sdep

indicating that the data streams contain concept drift making updates manda-
tory to keep performance. While for the Spectra dataset updating with a perfect
policy almost performs as well as supervised learning, for the Leaks dataset, we
obtain much worse results which has to be expected as the dataset contains more
noise due to different patterns across weekdays and weekends.

On the Spectra dataset, we observe that choosing a threshold automatically
increases the accuracy over the naive updating strategy. However, an improve-
ment can be gained if the optimal threshold is chosen indicating that more work
on decision strategies would be beneficial. In converse, for Leaks, we observe
that the naive version outperforms some of the proposed scores which is prob-
ably caused by the fact that some leakages are difficult to differentiate from
the leak-free setting because they only have a limited impact on the pressure
measurements due to their location in the system yielding a small margin and
potential for error. Again we observe that choosing the optimal threshold ben-
efits the scores considerably although it does not reach the level of the perfect
policy results reflecting again that the dataset is more noisy.

While investigating the choice of optimal θ on the Leaks data streams resulted
in very noisy results which is plausible as each stream considers a different leakage
location resulting in different network dynamics, analyzing which θ is optimal for
the Spectra streams yielded a more consistent picture. As visualized in Fig. 1,
while the optimal threshold for c2 varies a lot, c1 and c3 are yielding much
more robust optimal θ. We find that c1 and c3 are particularly robust over the
considered streams.

1The experimental code be accessed at https://github.com/vvaquet/
Self-Supervised-Online-Learning
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5 Conclusions and future research directions

Since the availability of label information at deployment time is unrealistic in
some streaming settings, in this work, we proposed a self-supervised online learn-
ing for incrementally drifting data streams. We showcased the suitability of the
proposed setup and strategy by evaluating an online k-NN implementing the
strategy on two types of incrementally drifting data streams.

This work can be understood as a step towards learning from drifting data
streams in the absence of ground truth availability. Future work in this setting
is required. In particular, a generalization of Theorem 1 where γ is induced by
general (stochastic) differential equations, is possible, and extremely important
for ML as it allows physics-informed ML. Besides, on a more practical note,
transferring other online learning mechanisms to this setup, developing and an-
alyzing alternative certainty scores and decision mechanisms is highly relevant.
Besides, it might be beneficial to implement a mechanism that can cope with
unexpected drift, e.g. by considering drift detection schemes that trigger a recal-
ibration procedure. Finally, both self-supervised and supervised online learning
would strongly benefit from novel data benchmarks in which the properties of
realistic drifts are documented.
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