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Thomas Avé1, Matthias Hutsebaut-Buysse1, Wei Wei1 and Kevin Mets2 ∗

University of Antwerp - imec, Sint-Pietersvliet 7, 2000 Antwerp, Belgium
IDLab - Department of Computer Science 1, Faculty of Applied Engineering2

Abstract. Neural networks are increasingly deployed on edge devices,
where they must adapt to new data in dynamic environments. Here, model
compression techniques like pruning are essential. This involves removing
redundant neurons, increasing efficiency at the cost of accuracy, and cre-
ating a conflict between efficiency and adaptability. We propose a novel
method for training and compressing models that maintains and extends
their ability to generalize to new data, improving online adaptation with-
out reducing compression rates. By pre-training the model on additional
knowledge and identifying the parts of the deep neural network that ac-
tually encode task-relevant knowledge, we can effectively prune the model
by 80% and achieve 16% higher accuracies when adapting to new domains.

1 Introduction

Deep learning has surged in popularity over the past decade, with swarm in-
telligence as an emerging application domain where low-power sensor devices
coordinate to complete complex tasks. Online tuning by individual nodes is cru-
cial in dynamic environments with varying local conditions. However, limited
on-device resources constrain the complexity of deployable and trainable mod-
els. Model compression addresses this by reducing neural network size while
preserving predictive power. Pruning, one such method, removes redundant pa-
rameters from a fully-trained network, resulting in a more compact architecture.
However, traditional methods do not account for online learning scenarios, fo-
cusing instead on creating the smallest static model, removing any redundancy
not necessary for the current task, including features beneficial for new tasks.

We propose a novel method that extends the generalization capabilities of
compressed models, enabling online adaptation without sacrificing compression
rates. Generalization involves learning general patterns that apply to new data,
which is crucial for adapting to changing data distributions. Prior research sug-
gests that pre-training on a larger dataset before fine-tuning improves generaliza-
tion [2] but this typically requires larger models that are harder to prune due to
more active connections encoding additional knowledge [1]. Methods like Itera-
tive Magnitude Pruning (IMP) use weight magnitudes to determine importance,
making it challenging to distinguish between task-relevant and generalization-
improving knowledge. This limits the compression potential, making it counter-
productive for low-power online adaptation.
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To address this issue, we leverage Layer-wise Relevance Propagation (LRP),
a technique originally developed for interpretability[5]. LRP enables us to score
and identify neurons’ relevance to the main task. By pruning and retaining only
features with high task relevance, we preserve the model’s generalization and
adaptability for fine-tuning to new subclasses and continual learning on new
classes, as illustrated in Fig. 1.
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Fig. 1: Illustration of the two online adaptation scenarios on CIFAR-100.

In this paper, we first investigate how well a model compressed through struc-
tured pruning can adapt to new data. Then, we evaluate if our pre-training and
task-relevant pruning method improves generalization during online adaptation
on the CIFAR-10, CIFAR-100, and DomainNet datasets, comparing the results
with both IMP and LRP-based pruning methods. Our experiments confirm
that this approach can train a more accurate compressed model while achieving
better generalization in both adaptation scenarios.

2 Background & Related Work

Layer-wise Relevance Propagation (LRP) [5] was first proposed to explain
the predictions of neural networks by attributing relevance scores to features in
the input data. LRP works by propagating a network’s output back through the
layers and assigning partial prediction contributions to each neuron based on its
activation strength. The relevance score Rl

j of neuron j in layer l is computed
(for LRP-0) by summing the relevance scores of all neurons in l + 1 connected
to j, weighted by their connection strength for the given input.

Rj =
∑

k∈l+1

ajwjk∑
i∈l aiwik

Rk (1)

Fine-tuning pruned models is often used to recover accuracy after pruning or
as part of progressive pruning [3]. This is typically done with the original dataset
to store behavior rather than adapt to new data. Gordon et al.[4] evaluated
unstructured IMP on BERT before and after fine-tuning for transfer learning,
finding that low pruning levels (30-40%) did not affect downstream tasks, and
pruning once after pre-training was as effective as after fine-tuning to each task.
Instead, we focus on structured pruning, which removes entire neurons or filters
for higher efficiency but lower expressiveness at the same size.
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3 Methodology

Our proposed method, trained with extra knowledge (left in Fig. 2) learns more
general features that are retained after pruning than a baseline trained only
on the main task (right), The baseline is prone to memorize more task-specific
features from the limited data, which are less relevant during online adaptation.
By using knowledge-based pruning with only relevant task data, we effectively
identify and remove redundant features while preserving model generalization.
Magnitude-based pruning can only identify non-encoding neurons, rather than
task-irrelevant ones. Despite requiring more active neurons during training,
task-relevant knowledge-based pruning can still obtain high compression rates.
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Fig. 2: The proposed pre-training and task-relevant pruning method, aimed at
enhancing the generalization of compressed models for online adaptation.

We consider two different online adaptation scenarios:
Fine-tuning on new subclasses: the same classes are present during training
and deployment, but the model must adapt to a shift in data distribution after
pruning. We further divide the classes into distinct sets of subclasses, reserving
some for fine-tuning and additional pre-training.
Continual learning on new classes: the model is trained on a subset of
classes present during deployment. The remaining classes are only introduced
after pruning. During training, some extra classes are included, but they are
removed during pruning and not present at deployment.
Formally, the data is split into the following sets at the class or subclass level,
depending on the scenario. These are then used as input for Algorithm 1.

Algorithm 1: Pre-Training and Task-Relevant Pruning

M0 ← train(T ∪ P ) ; // Train on additional and task knowledge

for i← 0 to prune iterations do
Si ← initialize the list of relevance scores with zeros;
for d ∈ P do

ad ← forward(Mi, d) ; // Compute activations for input d
Sd ← LRP (Mi, a) using equation 1;
S ← S + Sd;

ni ← compute l1 norm of neurons/channels in S;
Mi+1 ← remove neurons/channels from Mi with lowest % l1 norms;
Mi+1 ← train(Mi+1, P ) ; // Recover accuracy after pruning
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T: The extra data that is only used during the pre-training phase.
P: Data used during training and pruning to compute the LRP relevance scores.
F: A disjoint subset of data that is withheld for the fine-tuning phase.

Our model is pre-trained on T ∪ P , pruned to retain only essential knowledge
for classifying P , and adapted on F (New Subclasses) or P ∪ F (New Classes),
depending on the scenario. To prevent forgetting original classes in the latter
scenario, we use replay-based continual learning with the complete P dataset.
We compared this to a baseline with T = ∅ to validate the impact of extra
training knowledge on generalization. Additionally, we verify that LRP-based
task-relevant pruning more effectively compresses the model while retraining all
knowledge for classifying P , compared to IMP.

4 Experimental Setup

We use the CIFAR-10, CIFAR-100, and DomainNet datasets to evaluate our
method. In CIFAR-10, we group the 10 classes into the superset {vehicles,
animals}. For CIFAR-100, there are 20 superclasses containing 5 classes each.
When fine-tuning, we reduce the number of classes to 2 and 20 respectively,
distributing the original classes among T , P , and F . In continual learning, a
distinct set of classes is reserved for T , P , and F , while maintaining the full 10
or 100 network outputs. We focus on fine-tuning to new styles for DomainNet,
as it was designed specifically for domain adaptation, with the same 345 classes
in 6 different styles. Table 1 contains the resulting splits, grouped in sets of
two: one with additional training knowledge and one where T = ∅, as shown
in Table 2. Splits for CIFAR-100 are analogous, but with too many classes to
present here.

Name T P F

CIFAR-9/3 birds, cats, deer,
dogs, frogs, horses

airplanes, automobiles, trucks ships

CIFAR-7/4 cars, dogs, horses airplanes, birds, frogs, ships cats, deer, trucks

DomainNet5/3 real, sketch infograph, clipart, quickdraw painting

Table 1: Overview of dataset splits for CIFAR-10 and DomainNet.

Scenario New Classes New Subclasses

Pre-train on T ∪ P P (T = ∅) T ∪ P P (T = ∅)

CIFAR-10 CIFAR-9 CIFAR-3 CIFAR-7 CIFAR-4

CIFAR-100 CIFAR-90 CIFAR-30 CIFAR-60 CIFAR-40

DomainNet N.A. N.A. DomainNet5 DomainNet3

Table 2: Overview of our experiment configurations.

Experiments are repeated 5 times for each pruning method (LRP & IMP) to en-
sure consistent results. For IMP, weight magnitudes are used instead of relevance
scores when computing the l1 norm in Algorithm 1. Our ResNet-50 base archi-
tecture with 23.5M parameters is trained with a learning rate of 5×10−4, batch
size of 32, Adam optimizer, and an early stopping criterion based on validation
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accuracy and patience of 4 epochs. We prune for 10 iterations, each removing
20% of the neurons in each layer, resulting in 17.5M, 13.3M, 10.3M, 8.3M, 6.7M,
5.6M, 4.8M, 4.1M, 3.6M, and 3.3M parameters. The checkpoint with the highest
validation accuracy of each iteration is used in the next iteration, and during
the adaptation phase to study the impact of model size on online adaptability.

5 Results

In this section, we assess the optimization of models on new data after either
IMP or LRP-based task-relevant pruning, both with and without pre-training
on additional knowledge. Fig. 3, shows that validation accuracy after online
adaptation is consistently higher when the models are pre-trained on additional
knowledge to improve generalization. The first point (23.5M) represents the
full model accuracy without pruning, on P , and after online adaptation on F or
P∪F depending on the scenario. Even the full model shows significant validation
accuracy improvement from pre-training on additional knowledge, due to better
generalization. This improvement is maintained successfully after our LRP-
based pruning, with a consistent gap between the two pre-training approach
accuracies on both P and F . However, this gap narrows as higher compression
prunes more generalizable features, particularly for DomainNet (Fig. 3i).
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Fig. 3: Pruning and validation accuracy for all datasets and adaptation scenarios.

The IMP experiments only show a similar improvement in the first pruning iter-
ations, as it cannot differentiate between task-relevant and additional features.
This results in more retraining on P to recover the accuracy after pruning, over-
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riding the general features learned in pre-training. We also conclude the models
maintain reasonably high accuracy after pruning and adapt well to new data.
In continual learning, F ∪ P accuracy is lower than on P after pruning due to
the classification task being harder at the same capacity. For the CIFAR-10
and CIFAR-100 datasets, accuracy after fine-tuning is higher than post-pruning
(Fig. 3c, 3d, 3g, 3h), as F contains fewer subclasses, simplifying the task. Do-
mainNet experiments reveal both the largest accuracy drop and biggest benefit
from pre-training on additional knowledge because the style in F (painting) is
closer to T (real, sketch) than P (infograph, clipart, quickdraw). Heavy pruning
and lack of general knowledge make adaptation harder for DomainNet3 which is
optimized for abstract styles. In the last two IMP iterations with DomainNet5,
accuracy on P drops below Domainet3 due to less intelligent pruning, although
adaptation performance remains higher. These findings suggest that our pre-
training and task-relevant pruning approach more effectively compresses models
while preserving their generalization capabilities for online adaptation.

6 Conclusion

Adapting to new data is crucial for edge devices in dynamic environments, but
their limited resources restrict model size and complexity. This necessitates
model compression such as pruning, but these typically do not account for on-
line learning scenarios. We present a novel approach that extends the generaliza-
tion of pruned models for online adaptation without compromising compression
rates. By pre-training on additional knowledge and using LRP to compute rel-
evance scores, we identified and retained only neurons encoding task-relevant
knowledge during pruning, while still benefiting from the increased generaliza-
tion. Experiments on CIFAR-10, CIFAR-100, and DomainNet confirmed that
this increased generalization resulted in higher validation accuracies, which were
better maintained post-pruning compared to an IMP baseline. The improved
generalization significantly enhanced accuracy during online adaptation, both
for learning new classes and when fine-tuning to new subclasses. Our approach
allows for effective model compression while maintaining high generalization on
new data, making it suitable for online adaptation scenarios.
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