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Abstract. The analysis and simulation of aircraft engine behavior have
garnered significant attention in the aeronautical industry, primarily due
to its implications for performance, maintenance, safety, and sustainability.
Our work successfully showcases the efficacy of utilizing time series data
collected from our aircraft engines to construct a digital twin capable of
dynamically emulating their real-time behavior. We then introduce a new
methodology to model the physical engine’s degradation and meticulously
monitor its evolution over time. By continuously analyzing the simulated
data against real-world performance measurements, our approach offers
valuable insights into the engine’s long-term behavior and health trajectory.

1 Introduction

In aircraft engine systems, sensors embedded within the engines collect critical
operational data during flight cycles, which is crucial for Prognostics and Health
Management (PHM) frameworks. For instance, in this study [1], the authors
introduce a recurrent neural network trained on temporal snapshot data to derive
a state vector that indicates engine degradation. Recent advancements have
led to the acquisition of continuous CEOD (Continuous Engine Operational
Data) during flight operations, providing a more comprehensive dataset. CEOD
comprises multiple sensor readings and computational outputs obtained by
onboard systems and subsequently processed post-flight. Utilizing this continuous
data stream shows potential for refining algorithms to achieve greater precision
and efficiency, overcoming the constraints associated with using snapshot data
exclusively. Notably, it has been instrumental in anomaly detection methodologies
[2]. Our research work addresses two primary objectives. First, it presents
a methodology for constructing a data-driven simulator for aircraft engines
utilizing CEOD. This simulator emulates the intricate dynamical behavior of
real aircraft engines, enabling sophisticated simulations under diverse operational
conditions, including varied flight regimes and engine controls. Such simulations
offer valuable insights into the diverse factors influencing engine health. Secondly,
it demonstrates the utility of this simulator in modeling the degradation processes
observed in physical engines. The proposed application represents a versatile
algorithmic framework capable of simulating aircraft engines and monitoring their
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health status. It holds considerable potential for deployment across scientific and
industrial sectors within and beyond the aviation domain.

2 Data-driven Simulator

2.1 Dataset

We use continuous engine data to train our simulator. They are sourced from
aircraft engines of the same fleet, notably the Continuous Engine Operational Data
(CEOD) in our context. Onboard sensors capture a multitude of measurements
at varying intervals, all of which we standardize to a uniform frequency of 1 Hz.
Throughout our case study, our focus lies on three key parameters: low-pressure
rotor speed (N1), temperature before the combustion chamber (T), and Exhaust
Gas Temperature (EGT). We simulate these parameters based on five external
conditions, as illustrated in Figure 1, which represent the flight mission profile
and encompass variables such as ambient temperature, altitude, Mach number,
Throttle Lever Angle (TLA), and a boolean variable indicating the boolean
engine’s operational status (ON/OFF).
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Fig. 1: Data-driven Aircraft Engine Simulator framework. CEOD: Continuous
Engine Operational Data. N1: Low-pressure rotor speed. T: temperature before
combustion chamber. EGT: Exhaust Gas Temperature.

2.2 Methodology

This simulator framework generates CEOD using a structured input-to-output
process. Starting with a standardized input where raw multivariate time series
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data are normalized, the workflow employs temporal phase partitioning to handle
the inherent complexities of varying flight lengths and operational states by
dividing data into phases (pre-, during, and post-cruise). Within these phases,
data is segmented into 300-second intervals with an overlap of 20 seconds, enhanc-
ing manageability, computational feasibility, and continuity for long sequences.
Phase-specific generative models then simulate data that retains real engine
behavior’s statistical and temporal characteristics, ensuring that each segment
is coherent with adjacent ones. The final steps include de-normalizing to revert
data to original scales and concatenating all segments to yield a comprehensive
CEOD representation ready for analysis.

2.3 Phase-specific generative models

These models are based on a unified model architecture, the Multivariate Time
Series Conditional Generative Adversarial Nets (MTS-CGAN) [3, 4], adapted
to simulate aircraft engine behaviors. This transformer-based CGAN generates
context-dependent multivariate time series data. It incorporates a generator (G)
and a discriminator (D). We condition data generation on the specific mission
profile and the data segment immediately preceding the current one. This dual
conditioning ensures that each generated data segment transitions smoothly
into the next, preserving the temporal correlations. The architecture, therefore,
supports seamless, coherent data flow across segments.
The conditional generator (G) (Fig 2a) consists of two primary components.
Context Encoder: This first component processes a noise vector and the flight
profile mission through multiple blocks of a transformer encoder, utilizing multi-
head self-attention to extract contextual interdependencies.
Adjustment Encoder: The second component ensures continuity and contextual
relevance across the generated segments. It is comprised of two distinct layers: a
multi-head self-attention layer that processes embeddings from the previously
generated window to extract contextual features, followed by a separate multi-
head attention layer where the query is derived from the self-attention output
and the key and value from the first component’s output. It incorporates data
from the previously generated window with the encoded flight profile mission.
The conditional discriminator (D) (Fig 2b) learns to classify whether its input
CEOD is real or generated.
We employ the Least Squares GAN (LSGAN) loss for optimization, with an
additional loss term for the generator that ensures smooth transitions between
overlapping segments. The discriminator and generator are trained in parallel,
respectively minimizing the loss functions LD and LG.
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(a) Generator (b) Discriminator

Fig. 2: Architecture of the Generator and the Discriminator.

3 Degradation Modeling

Modeling the degradation of aircraft engines is a complex task. Each engine
has its own degradation trajectory based on the missions it has undergone
and how pilots have operated it, among other variables. It is challenging to
model because the wear state of each engine is unique and depends on multiple
factors. The simulation tool we have introduced thus far is an “average engine
simulator”, as it was trained on a fleet of aircraft engines. To simulate the
accurate behavior of an engine while considering its wear state, one must be
able to extract this degradation and adjust the simulator’s final output to reflect
the specific engine’s degradation state. Our approach involves training the
simulator on non-degraded data, thereby obtaining what we call a “clean average
engine simulator”. This means a simulator that predicts the behavior of an
engine exhibiting no degradation. Then, for missions completed over an engine’s
lifecycle, we compare the actual data collected from the specific physical engine
to the simulated data. This results in a residual, which represents the discrepancy
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between the behavior of the non-degraded fleet’s average engine and that of the
engine considered, which inevitably deviates from a non-degraded state after each
cycle, depending on its wear condition and maintenance history. From our engine
fleet, we have created a second dataset comprising residuals for various engine
cycles. We then develop a second model to forecast the next residual based on
the residuals from the last seven engine cycles. Regardless of the engine, the
model forecasts the next residual as the output by inputting the last seven flights
conducted by that engine. Once we have the forecasted residual, we can simulate
the actual behavior of a specific engine in its next cycle, provided we have the
mission profile. The current approach involves simulating non-degraded outputs
with our clean average engine simulator, then adjusting them based on the
forecasted residual, thereby incorporating this bias, which models the deviation
of that specific engine’s behavior from the non-degraded fleet’s average behavior.
Define Sclean as the clean average engine simulator trained on non-degraded
data, where Sclean(X) = Ypredicted simulates the behavior of an engine with no
degradation. For an engine with specific degradation, calculate the residual R by
R = Yactual−Sclean(X), where Yactual is the data from the physical engine. Using
residuals {Ri} from various engine cycles, we train a model f to predict the next
residual Rt+1 from the last seven residuals: Rt+1 = f(Rt, Rt−1, . . . , Rt−6). The
adjusted simulation of the engine’s behavior is Yadjusted = Sclean(X) +Rt+1.

We design an LSTM model to forecast the Mean Squared Error (MSE)
between the “clean average engine simulator” output and the real engine data.

4 Experiments and Results

For degradation experiments, we tested on the N-CMAPSS dataset [5], which
consists of turbofan engine degradation simulations. This dataset simulates
the lifecycle of engines, with degradation occurring over time until their end
of life. We trained on a training set of 6 engines and tested on a dataset of 4
engines. Figure 3a illustrates a comparison between the forecasted Mean Squared
Error (MSE) and the actual MSE calculated from the outputs of a non-degraded
simulator and real engine data throughout an engine lifecycle in a test dataset.
The predictive capability of the forecasting model is demonstrated by its accuracy
in estimating the next MSE based on the MSE values from the previous seven
cycles. Also, the blue line indicates that as the engine degrades, there is an
increase in the Mean Squared Error (MSE) between the non-degraded simulator
outputs and the actual measurements from the real engine data. In Figure 3b,
the MSE comparison between the simulator outputs, which were corrected using
the forecasted MSE, and the real engine data is presented alongside the actual
MSE calculated from the same engine’s non-degraded simulator outputs and
real engine data. The correction applied to the simulator outputs involved the
addition of the bias identified in the forecasted MSE. It is observed that the
bias-corrected simulator outputs consistently exhibit a relatively low MSE, which
does not escalate as the engine continues to degrade. This indicates that the
adjustments made to the simulator outputs successfully capture the degradation
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characteristics specific to the engine.

Fig. 3: Comparison of MSE between corrected simulator and Real Engine Data
with Actual MSE between non-degraded Simulator and Real Engine Data

5 Conclusion

In this paper, we introduced an innovative approach to modeling aircraft engine
degradation through a sophisticated simulator. Using simulated data to mimic
real engine behavior allows us to anticipate failures and optimize engine perfor-
mance, thereby extending the operational lifespan of aircraft engines. Looking
forward, we aim to refine our degradation models to reflect more realistic and
complex operating conditions. This advancement could lead to more precise
degradation predictions and a deeper understanding of engine behavior under
varied operational scenarios.
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