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Abstract. Condensation trails significantly contribute to aviation’s im-
pact on climate change. Their effective mitigation involves formulating
accurate predictions of occurrence, introducing the relevant constraints
in trajectory optimization and employing reliable verification strategies
based on observations. Atmospheric data, expert knowledge and contrails
observations can be leveraged for these purposes. However, several factors
determine a limited prediction accuracy and high uncertainty bounds, in-
cluding the difficulties in predicting contrails persistence, the complexity of
trajectory optimization problems and the lack of labelled data for contrail
verification. This paper gives an overview of our robust Artificial Intel-
ligence methods aiming to tackle these challenges throughout the entire
contrail mitigation chain.

1 Introduction

Aviation accounts for 1.9% of the anthropogenic carbon footprint1, yet non-CO2

effects were estimated between half and three times the CO2 radiative forcing
2. Among these, condensation trails (contrails) emerge as the predominant con-
tributor, making their avoidance a major goal to achieve sustainable aviation
operations. Contrails are the slender clouds trailing behind aircraft engines dur-
ing flight, resulting from the mixing of humid jet exhaust with the cold ambient
air. This process produces small ice particles that contribute significantly to the
greenhouse effect (Figure 1 (a)).

While most contrails dissipate within ten minutes, the persistent ones can
survive for several hours and spread to hundreds of kilometers. Largely re-
sponsible for the associated climate change effect, these persistent contrails are
generated by only 2.2% of flights, opening to the perspective of an efficient mit-
igation by re-routing a limited amount of airplanes [1]. This operation requires
the prediction of the regions where condensation trails will form, the modifica-
tion of the flight trajectory to avoid these regions and, finally, the verification
of the efficiency of the mitigation by analysing past predictions versus reality.
Today this strategy is only nascent in Air Traffic Operations.

∗This work is supported by Fr-Ge CONTRAILS (BPI DOS0182436/00), HE BECOM (grant
ID 101056885 ), SESAR JU CONCERTO (grant ID 101114785)

1IPCC, Climate Change 2023: Synthesis report
2Lee et al, The contribution of global aviation to anthropogenic climate forcing for 2000 to

2018, Atmos. Env. 2021
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Fig. 1: (a) Illustration of the green-house effect determined by the contrails; (b)
Measurements of DRL A320 contrail by the NASA DC8 research aircraft [6]; (c)
Satellite image showing contrails as dark blue lines, visible in the upper-half of
the image.

Despite the thermodynamic Schmidt-Appleman criterion identifying the at-
mospheric regions where contrails are likely to form [2], numerical weather sim-
ulation still struggles to predict precise persistence localisation, i.e. in the Ice
Super Saturated Regions (ISSRs) [3]. As for trajectory optimization, even if
many different general methods exist to solve the problem, generating realistic
paths efficiently remains a challenge under active research [4]. Finally, classi-
cal contrail detection algorithms struggle to achieve a low false detection alarm
rate without loosing their efficiency [5], despite the abundance of sensors pro-
viding contrail observations (regular cameras, ground images such as whole-sky
cameras, satellite or lidar). In particular, the limited availability of labelled
data describing the contrails, as well as the difficulty in producing physically-
plausible numerical representations of the phenomenon need to be tackled in
order to develop robust detection or prediction methods.

A promising approach to face all these challenges is to combine domain knowl-
edge such as physics, geometrical properties, network constraints with more clas-
sical data-driven AI, such as neural networks, in order to increase the frugality
and the robustness of the solutions at all stages: before, during and after the
flights. In this article we present an algorithmic overview of the research direc-
tions in contrail mitigation currently investigated in Thales based on hybrid-AI
with reduced dependence of labelled data. We address the different sources of
data in Section 2, contrail prediction solutions in Section 3.1, route optimisation
strategies in Section 3.2 and AI-based contrail verification in Section 3.3.

2 Contrails sensing

AI for contrails mitigation requires data that can be provided by in-situ and re-
mote measurements. In-situ measurements are operated through airborne sensor
carried in close proximity of the contrails or the ISSRs by radiosondes or special
aircraft (Figure 1 (b) [7]). Although these measurements directly sample local
physical properties relevant to contrail modeling, obtaining extensive data sets
is challenging. The IAGOS (In-service Aircraft for a Global Observing System)
project addresses this issue by installing the sensors on commercial flights to
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sample the global atmospheric composition, but these measurements are con-
strained to the flight route of the aircraft and are sparse [8].

Remote measurements include distant observations (ground, satellite, radar,
lidar), which can be used to verify predictions. Radar and lidar systems are
commonly utilized to optically characterize the atmospheric columns, allowing to
infer local physical properties with some success [9]. Whole-sky ground imagers
can capture very young contrails in both visible and infrared spectra albeit
with limited geographical coverage (usually less than 100km). The dependence
on meteorological phenomena or sun flares is quite high, requiring important
calibration or otherwise processing. Networks of such cameras3 are nevertheless
very interesting to capture lower altitude contrails which may be missed by other
sensors, e.g. satellite, in particular when they can instrument flight trajectories
along heavy traffic corridors.

Satellites are among the most used sources of large-scale observations of con-
trails (Figure 1 (c)). Contrails are visible in the same infrared spectral bands
as cirrus clouds and their ice particles content reveals them in brightness tem-
perature differences (BTD) images. Therefore, color schemes combining all the
relevant BTD channels4 can be employed during preprocessing to enhance con-
trail observations and ease manual annotation for AI algorithms. These represent
an effective mean to benchmark numerical predictions and mitigation strategies
[3], but they may miss very young contrails. The detection problem in these
images is quite difficult due to the degenerate dimensions of contrails5 and the
ambiguities with regular clouds.

To this end we are currently working on building a collocated dataset from
ground imagers and European geostationary satellites. This necessary first step
in using machine learning algorithms is considered in a frugal manner, aiming
to take advantage of all the possible available annotated data sources, combined
with few-shots/transfer learning.

3 AI in Green Aviation Operations

We aim to exploit data collected via in-situ and remote sensing through Ar-
tificial Intelligence to improve contrail mitigation along the whole Air Traffic
Management pipeline. This includes the prediction of contrails for a given flight
path, the optimization of the aircraft trajectory with regards to different indica-
tors, and the verification of the adopted mitigation strategy through atmospheric
observation.

3.1 Contrail prediction using Physics-informed AI

Given a flight path and the local weather conditions, the numerical prediction
of persistent contrails strongly depends on the parameterisations of atmospheric

3For instance the FRIPON network: https://www.fripon.org
4e.g. the channels 12.0, 10.8 and 8.7µm of the European MSG satellite can be combined to

yield the Ash-RGB colored image taken on 14/01/2024:09h05 in Figure 1 (c).
5Most contrails are sparse objects in the range of 2 × 40 pixels in an approx. MP image
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processes and the assessment of the ISSRs [2]. These could be learnt applying
data assimilation techniques on in-situ and remote measurements. However, the
latter typically consist of unlabelled proxies, while the former are labelled but
very sparse in space and time.

Physics-Informed Neural Networks (PINNs) offer an ideal solution to obvi-
ate these limitations. PINNs (Figure 2 (a)) are neural networks that include
both data and a physical principle in the learning framework, and have rapidly
emerged as an alternative to classical numerical methods for Partial Differen-
tial Equations [10]. By incorporating physics laws as regularization, PINNs are
less prone to overfitting the data, which makes them a more robust solution in
the case of sparse or unlabelled measurements. Additionally, PINNs integrate
physics equations as soft constraints and are thus less sensitive to model approx-
imations. Both aspects represent an advantage that PINNs offer in the context
of contrail mitigation and ISSR prediction. Finally, PINNs are extremely rapid
at inference.

For these reasons, PINNs are being developed at Thales by combining in-situ
and remote measurements together with suitable conservation principles. The
short time to prediction of PINNs offers the possibility of ensemble predictions,
facilitating the quantification of contrail risks across multiple trajectories.

3.2 Mitigation by trajectory optimization

While ISSRs prediction is an active field of studies, the idea of altering flight
paths to avoid these locations becomes of great interest to mitigate the impact of
aviation on climate. Thales develops the tool Cohort based on Path Planning
as this approach proved to be efficient for trajectory optimization, among other
methods listed in [4]. However, the application of general Path Planning algo-
rithms for contrail mitigation raises several research questions. Firstly not only
different climate impact indicators coexist6, but also at this time, no aggregation
of cost and climate impact indicator obtained consensus. As a consequence, our
system will produce trajectories through a multi-objective optimization process,
and the output Pareto front should then be considered as a support to decision
(Figure 2 (b)). In this regard, our approach is close to the one in [11], whereas
multi-criteria optimization was preferred in [12]. The second difficulty is linked
with the dynamic nature of atmospheric state which dramatically increases the
size of the solution space. To tackle this point and provide operators with mod-
erate response times, we are considering to take advantage of massively parallel
computation on GPU. Few such attempts were reported in literature. One of
them is described in [13], but if the purpose is the same (significantly reducing
the computation time), the parallel computation is applied on a different kind
of algorithm. In future steps we will study the extension of Cohort library
for dealing with the stochastic input data, as well as considering multi-flight
optimization.

6Global Warming Potential (GTP ), Average Temperature Response (ATR), Radiative
Forcing (RF ) to name a few
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Fig. 2: (a) Physics informed neural network; (b) From trajectory generation to
multi-objective optimization; (c) Qualitative inference results on one annotated
European satellite image with a neural network trained on the GOES-16 dataset.

3.3 Contrail verification through imagery

We are currently also developing contrail classification and detection algorithms
using two sources of data: ground cameras in spherical geometry and satellite
images from the European weather satellite, Eumetsat7. The key idea is to limit
the amount of needed labelled data through transfer learning as well as novel
AI algorithms, such as geometric deep learning. These enforce knowledge about
the symmetries present in an image directly in the model structure, allowing for
a drastic reduction of trainable parameters [14] while being more data-frugal.
Moreover, they work directly in the native geometry of the cameras (e.g. spher-
ical), thus limiting the effects of projection distortions. Automatically detecting
images containing at least one contrail, via neural classifiers could thus be a
first screening step before tracking persistent contrails in satellite with more
elaborated segmentation algorithms.

Geostationary satellites are gaining traction in the AI community through
the Open Contrails labelled dataset [15], containing more than 20.000 annotated
GOES-16 images, covering North America. For global contrail verification, a
very interesting research avenue is combining training on this dataset with Eu-
metsat or Himawari data in order to cover other regions of the globe. In Figure 2
(c) we present a preliminary result showing the good detection capability of a
neural network trained solely with GOES-16 images and tested on Eumetsat
MSG ones8. Despite the differences in temporal and spatial resolution between

7https://view.eumetsat.int/productviewer?v=default
8This result is not to be interpreted in a statistical sense, the DICE score refers to the

displayed image only. We do not currently have enough annotated images for statistical tests.
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the two sensors this result highlights the potential for transfer/few-shot learning,
drastically reducing the need for labels on the MSG images.

4 Conclusions

In this article, we provided an overview of the research directions investigated in
Thales for building robust AI solutions to mitigate contrails throughout the
entire pipeline: prediction, trajectory optimisation and contrail verification.
These include Physics-Informed Neural Networks, multi-objective optimization
approaches, and robust-by-design Deep Learning. By leveraging the frugality
and interpretability of these techniques we aim to speed up the introduction of
contrail mitigation into sustainable Air Traffic Operations.
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