
Positive and Scale Invariant Gaussian Process

Latent Variable Model for Astronomical Spectra

Nikolaos Gianniotis, Iliana Isabel Cortés Pérez and Kai Lars Polsterer∗
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Abstract. We propose a probabilistic model that reduces the dimension-
ality of positive-valued data in a scale-invariant way, treating data items
that differ only in scaling as identical. Extending the Gaussian Process
Latent Variable Model, we ensure positive function values by applying a
non-linear transformation to latent function values. To address the in-
tractable marginal log-likelihood, we utilize a variational lower bound and
amortized inference to reduce the number of variational parameters. We
apply our model to reconstructing partially observed spectra and show
how its scale-invariant property leads to better reconstructions.

1 Introduction

Gaussian processes (GPs) [1] are a versatile tool in machine learning, but im-
posing on them constraints like positivity, monotonicity, or physical constraints
is challenging [2]. Past works have considered constraining GPs as solutions to
differential equations [3], temporal and spectral reconstruction problems [4], or
injecting domain-specific constraints via linear operators [5]. Other works con-
strain GP outputs with non-linear functions [6, 7], bound outputs to positive
values by constraining the marginal likelihood [8], or cast linear constraints as
conditional expectations of the truncated multivariate Gaussian distribution [9].

In this work, we aim to discover a latent space for positive-valued astro-
nomical spectra. Amongst past works on dimensionality reduction for spectra
[10, 11, 12], [13] uniquely incorporates a non-negativity constraint. We extend
the Gaussian process latent variable model (GPLVM) [14] by bounding its out-
puts to positive values. The amplitude of astronomical spectra is not an intrincic
physical property and should not be reflected in the latent space. We introduce
scale-invariance and show that it leads to better reconstructions.

1.1 Gaussian Process latent variable model

We consider the inference of a function f(·) from observed input-output pairs
{xn ∈ R

Q, yn ∈ R}Nn=1
. We take a probabilistic view and model f(·) with a GP:

f(x) ∼ GP(m, k(x,x′; θ)) ,

where m ∈ R specifies the unknown mean value of f(·) and k(x,x′; θ) specifies
the covariance function [1]. A simple regression model for multidimensional
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outputs yn ∈ R
D, models each d-th output dimension with an independent GP:

log

∫ D
∏

d=1

N
∏

n=1

N (ynd|fnd, β
−1)N (f d|0,K)df =

D
∑

d=1

logN (yd|0,K + β−1IN ) ,

where fnd are the function values, and all D dimensions share the same N ×N

covarianceK (for brevity we suppress the dependence ofK on x in the notation).
This model can be also employed for dimensionality reduction and is known as
the GPLVM [14]: we view y as the images of unknown, latent low-dimensional
input coordinates x under a probabilistic map.

1.2 Basic statements

We use the following in the formulation of our model:

〈lnN (y|Ax+ b,C)〉N (x|µ,Σ) = lnN (y|Aµ+ b,C)−
1

2
tr(ΣATC−1A) .

We use the expectations wrt N (x|µ, σ2), E(a, µ, σ, b) ≡ 〈exp(ax+b)〉 = exp(aµ+
(aσ)2

2
+ b) and B(a, µ, σ, b) ≡ 〈exp(ax+ b)2〉 = E(2aµ, 2aσ, 2b). The variance of

exp(ax+ b) is V (a, µ, σ, b) ≡ B(a, µ, σ, b)− E(a, µ, σ, b)2.

2 Proposed model

We extend the GPLVM to enforce positivity and scale invariance. We call the
extension GPLVM+. The map between low-dimensional coordinates x to high-
dimensional data y is modelled with D independent GPs. We impose positivity,
by applying the exp(a · f + b) function on the latent function values f of the
map, where a ≥ 0, b respectively control the amplitude and mean value of f .
Additionally, we ensure scale invariance by assigning a scaling coefficient sn > 0
to each data item, so that two data items differing only in scale are projected to
the same location x. The marginal log-likelihood of GPLVM+ reads:

ln

∫ D
∏

d=1

N
∏

n=1

N (ynd|sn exp(afnd + b), β−1)N (fd|0,K)dfd . (1)

2.1 Derivation of lower bound

The introduced non-linearity prohibits analytically integrating out the latent
values fnd. We resort to variational inference [15] to approximate the marginal
log-likelihood with a lower bound. Denoting the collection of all observations
ynd as Y , latent values fnd as F and xnq as X, the lower bound reads:

ln

∫

p(Y ,F |X)dF ≥

∫

q(F ) ln p(Y ,F |X)dF −

∫

q(F ) ln q(F )dF ,

where q(·) is a density we need to postulate, which if equal to the true posterior,
makes the lower bound equal to the marginal log-likelihood. We postulate a
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factorised posterior q(F ) =
∏D

d=1
q(fd), where q(fd) = N (fd|µd,Σ), with µd ∈

R
N and all D dimensions share the same N × N covariance Σ. In order to

reduce the number of free parameters in Σ, we parametrise, according to [16],
as Σ = (K−1+Λ)−1, where Λ is a N ×N diagonal matrix of positive elements.
For this choice, the lower bound reads:

〈

D
∑

d=1

N
∑

n=1

lnN (ynd|sn exp(afnd + b), β−1)〉q + 〈

D
∑

d=1

lnN (fd|0,K)〉q +H[q] , (2)

where the entropy term reads H[q] = D
2
ln
(

(2πe)N |Σ|
)

. Given the basic results
in Section 1.2, the first expectation in Eq. (2) reads:

D
∑

d=1

N
∑

n=1

1

2
ln(

β

2π
)−

β

2
(ynd − snE(a, µnd,

√

Σnn, b))
2 −

βs2n
2

V (a, µnd,
√

Σnn, b) =

D
∑

d=1

N
∑

n=1

lnN (ynd|snE(a, µnd,
√

Σnn, b), β
−1)−

βs2n
2

V (a, µnd,
√

Σnn, b) .

The second expectation in Eq. (2) reads
∑D

d=1
lnN (µd|0,K) − D

2
tr(K−1Σ).

To learn the latent space, we optimise the lower bound wrt the free variational
parameters µd, Λ, kernel hyperparameters θ, latent coordinates xn and param-
eters sn, a, b, β. We also note that only K depends on xn.

2.2 Amortised inference

The number of free variational parameters in posterior q(F ) grows with the
number of observations: N ·D for the means µd ∈ R

N and N for Λ. This leads
to a computational burden on the optimizer. We also note that in the lower
bound in Eq. (2), the latent coordinates x in matrix K are decoupled from the
latent function values fnd, i.e. changing x does not influence directly fnd, which
exarcebates the optimisation problem.

We address both issues via amortised inference [17]: we parametrise the
variational parameters µd ∈ R

N as the images of the latent coordinates xn

under a neural network g(xn;w) : RQ → R
D, where w are the weights of the

network. If gd is the d-th output of the network, then gd(xn;w) returns µnd.
Evaluating gd on all xn, we obtain the vector µd ∈ R

N . Thus, we optimise the
lower bound of Eq. (2) wrt the weights w of network g, Λ, the latent coordinates
xn and parameters sn, a, b, β, θ using scaled conjugate gradients[18].

2.3 Inference for test data

Given N∗ number of yet unseen, test data items y∗

n, we want to infer the cor-
responding latent coordinates x∗

n. The corresponding latent function values are
f∗

nd. The likelihood for the test data reads:

N∗
∏

n=1

D
∏

d=1

N (y∗nd|s
∗

n exp(af
∗

nd + b), β−1) . (3)
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The latent function values f∗

d of the test data depend on the latent function
values fd of the training data as follows [1]:

p(f∗

d|fd) = N (f∗

d|K
T
∗
K−1fd,K∗,∗ −KT

∗
K−1K∗) , (4)

where K∗ ∈ R
N∗×N is the cross-covariance between test and training data;

K∗,∗ ∈ R
N∗×N∗ is the covariance for the test data items1. Integrating out fd in

Eq. (4) with respect to posterior q(fd) reads:

p(f∗

d) = N (f∗

d|K
T
∗
K−1µd,K∗,∗ −KT

∗
(K +Λ−1)−1K∗) .

Density p(f∗

d) acts as the prior for the latent function values for the testing data:

ln

∫ N∗
∏

n=1

D
∏

d=1

N (y∗nd|s
∗

n exp(af
∗

nd + b), β−1)p(f∗

d)dfd . (5)

We note the similarity of Eq. (5) to the marginal log-likelihood in Eq. (1).
Again, we face an intractable integral and we resort to a variational lower
bound: we postulate an approximating posterior r(F ∗) =

∏D

d=1
r(f∗

d), r(f
∗

d) =
N (f∗

d|νd,A). We parametrise the covariance as A = (C−1 +L)−1, where L is
a N∗ ×N∗ diagonal matrix of positive elements [16] . The lower bound reads:

〈ln

N∗
∏

n=1

D
∏

d=1

N (y∗nd|s
∗

n exp(af
∗

nd + b), β−1) + ln

D
∏

d=1

p(f∗

d)〉r +H[r] , (6)

where H[r] is the entropy of r(F ∗). The expectations in Eq. (6) are calculated
in the same way as the ones in Section 2.1. To infer latent coordinates x∗

n for
the test data y∗

n, we optimise the lower bound in Eq. (6) wrt νd, L, x
∗

n and s∗n.

3 Numerical Experiments

We use a two-hidden layer network g(·;w), each layer has 50 units, with tanh
activations. We employ the kernel k(x,x′; θ) = θ2

1
exp(−θ2

2
‖x− x′‖2).

Rubber duck. We use 64× 64 images of a rubber duck photographed from 72
angles of a full rotation [19]. The images form an intrinsically two-dimensional
closed curve. We scale each image with a factor sampled from the uniform
density U(0.5, 1.5). We train the GPLVM and GPLVM+ on the images for
Q = 2. Fig. 1 demonstrates the scale invariance of the proposed model.
Spectra. We work with astronomical spectra from the SDSS survey2 observed
on a grid of 500 wavelengths. Each spectrum is observed only in some wave-
lengths, the rest are treated as missing values. We test the ability of the model to
reconstruct partially observed test spectra: in each test spectrum we randomly
remove 10% of the values and reserve them for checking model predictions. We

1These matrices are actually functions of the latent coordinates i.e.K∗(X
∗) and K∗,∗(X

∗).
We refrain from denoting them as such in order to lighten notation.

2https://www.sdss.org/. We shift spectra to the restframe.

318

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  

https://www.sdss.org/


(a) GPLVM+ (b) GPLVM

Fig. 1: GPLVM+ finds the intrinsic structure of the data, while GPLVM cannot.

fix Q = 3. In a first experiment (Fig. 2a, 2b), we randomly take 1000 spec-
tra from the BOSS catalogue for training, and 500 for testing. Spectra contain
negative values that are artefacts due to noise or cosmic rays. The GPLVM
and GPLVM+ achieve a normalised mean squared error of 0.61 and 0.42 respec-
tively. A 95% bootstrap confidence interval shows that the difference of ∼ 0.19
is statistically significant and lies in (0.098, 0.362). In a second experiment, we
take 500 spectra from the Stripe-82 catalogue that exhibit great variation in

amplitude. The scale invariant GPLVM+ produces good reconstructions, while
GPLVM produces unrealistic spectra (Fig. 2c), unlike any spectra in the dataset.

4 Conclusion

We introduced the GPLVM+ for dimensionality reduction of positive-valued data
with scale-invariance. Numerical experiments validate its effectiveness. Cur-
rently, GPLVM+ incurs high inference costs for latent coordinates of new data.
We plan to tackle this in future research.
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(a) (b)

(c)

Fig. 2: (a) Both GPLVM and GPLVM+ produce good reconstruction for BOSS
data, but (b) GPLVM produces negative values for some cases. (c) GPLVM+

produces good reconstructions for the Stripe-82 data, but the GPLVM does not.
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