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Abstract. In fields like biomedical imaging, it is common to man-
age 3D images instead of 2D ones (CT-scans, MRI, 3D-ultrasound, etc.).
Although 3D-Convolutional Neural Networks (CNNs) are generally more
powerful compared to their 2D counterparts for such applications, it also
comes at the cost of an increase in computational resources (both in time
and memory). In this work, we present a new way to build 2D represen-
tations of 3D images while minimizing the information loss by leveraging
quaternions. Those quaternion CNNs are able to offer competitive perfor-
mance while significantly reducing computational complexity.

1 Introduction

Convolutional Neural Networks (CNNs) are one of the most powerful tools we
have today to manage images. Among the computer vision tasks, a few involve
3D images instead of the more standard 2D ones. For example, tools like CT-
scans, MRI or 3D-ultrasound are commonly used in biomedical imaging. Even
though CNNs first proved their efficiency with 2D images [1], their extension to
3D images is straightforward. However, while using 3D-CNNs generally leads
to better performances when working with 3D images, it comes at the cost of
a significant increase in computational resources (both in time and memory).
Therefore, there is a real opportunity to save computational resources by devel-
oping methods to bring back 3D convolutions to 2D ones. Nonetheless, the key
challenge to do this is to build a 2D representation of 3D images that minimizes
the loss of information. While 2D representations can be obtained by wrapping
slices along one arbitrary dimension with the channels, it leads to a drastic loss
of information.

In this work, we present a new way to represent 3D images in a 2D fashion
that allows trading the 3D convolutions for 2D ones. This is mainly inspired by
the work of Zhou et al. [2] for hyper-spectral images, and builds on their use
of quaternions. The 3D images are first transformed into quaternions, where
the three complex parts are used to build multiple views of the image along its
three respective axes. By also defining the filters as quaternions, it becomes more
intuitive for the model to encode correlations between the dimensions, as opposed
to a simple scalar representation that treats each dimension independently.

Section 2 presents the state of the art in using 2D convolutions with 3D im-
ages. After that, Section 3 provides some theoretical background on quaternions
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along with the motivations of this work. Section 4 describes our method, called
Quaternion-CNN (Q-CNN). Sections 5 and 6 follow up with the experimental
setup and the results, respectively. Finally, Section 7 concludes this work.

2 Related Work

For now, two main strategies exist for applying 2D convolutions to 3D images.
The first one is the most straightforward and consists in wrapping slices along
one of the three dimensions with the channels. However, by doing so, the local
connectivity prior (one of the main reasons for the efficiency of CNNs) is not
satisfied anymore for one arbitrary dimension. In other words, slices along this
dimension are considered as independent and the 3D structure is partially bro-
ken, resulting in a loss of information. Those models are generally referred to as
2.5D-CNNs [3]. The advantage is that it is straightforward to use and leads to
both significant speed ups and improvements in memory usage. However, it is
generally at the cost of lower performances due to the loss of information. Still,
it is often the most used method as in addition to the significant speed up, it
also makes it easy to take advantage of standard pre-trained 2D models.

The second approach is introduced by Yang et al. [4] who propose Axial-
Coronal-Sagittal (ACS) convolutions. Channels are split into three groups for
different views of the 3D structure (axial, coronal and sagittal), and 2D filters are
extended along a third dimension. Although it makes it possible to use 2D pre-
trained models, ACS CNNs are still performing 3D convolutions in their inner
working, preventing any gain in the number of numerical operations. Indeed, in
their work, Yang et al. specify that other early studies [3, 5] already investigated
the use of three views CNNs with 2D convolutions, but those methods generally
have trouble into capturing large 3D contexts.

Finally, many hybrid approaches like [6, 7] propose to build CNN with both
2D convolutions (for which the weights could be loaded from pre-trained models)
and 3D ones (randomly initialized). The different representations are learned in
parallel and merged at the end in a fusion network that performs the consid-
ered task. However, from a numerical performance perspective, the use of 3D
convolutions still constitutes a significant bottleneck.

3 Background on Quaternions and Motivations

Quaternions are a generalization of complex numbers. A quaternion is defined
by three complex parts and one real one. Conventionally, a quaternion is rep-
resented as z = a + ib + jc + kd, where a, b, c, d ∈ R and i, j, k are such that
i2 = j2 = k2 = ijk = −1 and ij = −ji = k ; ki = −ik = j ; jk = −kj = i.

For several years, the use of quaternions in deep learning has been considered
through different approaches [2, 8, 9]. The key motivation is the expressiveness of
quaternion algebra when it comes to extract complex features that are obtained
through the correlation of several views of the data. Indeed, thanks to the inter-
dependency of the complex parts, cross-correlations between the different views
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are more natural to express than when using a scalar representation.
As an example, Zhu et al. [9] show that using quaternions to store the red,

green and blue channels of colored images can be beneficial in CNNs. In this case,
each image is considered as one whole object, and the channels are no longer
independent. By also defining filters as quaternions, convolutions inherently
capture complex interactions across channels, which might be missed when they
are processed independently. Next to that, and with a similar motivation, Zhou
et al. [2] leverage the use of quaternions to build a better representation of 2D
multi-spectral images. Their idea is to use the different parts a, b, c and d to
store several views of the data. Namely, a stores a local representation of the
data by using 3D average pooling, b and c store multiple linear projections along
the two spatial dimensions and d along the spectral one. Thanks to the use of
quaternions, features from those different views can be cross-correlated to ease
the extraction of meaningful features. However, their work remains limited to
hyper-spectral images that only involve two spatial dimensions.

4 Proposed Method

Our method is motivated by the points highlighted in the previous sections. The
idea builds on the works of Yang et al. [4] (for the decomposition of 3D images in
ACS views) and Zhou et al. [2] (in the way quaternions are exploited) in order to
extend the last one to the case of three spatial dimensions. This section presents
how 3D images are converted into 2D quaternion images, as well as how the
CNN components are adapted to handle this representation.

4.1 Preprocessing Layer

A preprocessing layer is defined to convert 3D images into a quaternion ACS
representation. For each of the three spatial dimensions, trainable linear projec-
tions are performed to generate multiple 2D images. For a grayscale 3D image
of shape W × H × D, this preprocessing will output three 2D views of shape
CD ×W ×H, CH ×W ×D and CW ×H ×D, respectively, where CD, CH and
CW are numbers of channels. By considering W = H = D, each one of those
three views can be stored as a complex part of a quaternion matrix (leaving the
real part initialized to zeroes). In this situation, we fix the number of linear
projections to the initial size of the input images (CW = CH = CD = W ), for
convenience. Although the number of input values is three times bigger, it now
involves 2D views that can be treated with 2D convolutions. Thus, it leads to a
significant gain deeper in the network, as each feature map becomes a quaternion
matrix of shape C × W × W , while it becomes of shape C × W × W × W in
3D-CNNs.

4.2 CNN Components

In order to handle the quaternion representation of 3D images, the different
components of CNNs have to be adapted. Regarding convolutions, filters are
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defined as quaternions and a separable quaternion convolution (as proposed
in [2]) between an input F = F (r) + iF (i) + jF (j) + kF (k) and a filter K =
K(r) + iK(i) + jK(j) + kK(k) can be defined as

I = K ∗ F =
(
I(r) + I(i) + I(j) + I(k)

)
+ i

(
I(i) − I(r) − I(k) + I(j)

)
+ j

(
I(j) + I(k) − I(r) − I(i)

)
+ k

(
I(k) − I(j) + I(i) − I(r)

)
,

(1)

where I(·) = K(·) ∗F (·) is a vanilla convolution. Therefore, separable quaternion
convolutions are the result of the combination of four vanilla convolutions. Note
that the idea to extend the dense layers is similar, by also performing the same
combinations between the different parts of the quaternions.

Regarding the non-linear activation, batch-normalization and pooling layers,
the extension to quaternion values is straightforward by considering the different
parts independently. Finally, after the final output layer, only the real part of
the quaternions is kept (the predicted probabilities have to be real numbers) as
it empirically lead to better results than using squared modulus. Note that even
though the real part is zero for the input, real parts are progressively populated
deeper in the network thanks to the presence of mixed terms in Equation (1).

5 Experimental Setup

To assess the potential benefit of using our method, 2.5D, 3D, ACS and Q-CNNs
are trained and evaluated on three different toy datasets of 3D biomedical images
from MedMNIST3D [10]. MedMNIST3D is a collection of datasets that provides
baselines for the classification of various medical 3D images. In this work, we
considered OrganMNIST3D, NoduleMNIST3D and SynapseMNIST3D that all
contain grayscale images of 64×64×64 pixels. OrganMNIST3D is made of 1, 742
Abdominal CT images from 11 classes, NoduleMNIST3D of 1, 633 Chest CT im-
ages from 2 classes and SynapseMNIST3D of 1, 759 electron microscope images
from 2 classes. Training and testing sets are used as provided by MedMNIST3D.

For each model, the architecture presented in Table 1 is used. To allow a fair
comparison, a parameter λ is introduced to control the number of filters in each
layer so that the numbers of trainable parameters are similar in the different
methods. All the convolutions are performed with 3× 3 filters and followed by
a ReLU activation function. Data augmentation to randomly flip the images
along the three axes as well as dropout are used during training. Every training
is performed through 10 independent runs on one NVIDIA A100.

6 Results

The results are presented in Table 2. On the first two datasets, Q-CNNs are
at least able to achieve state-of-the-art performances and can even be better
than 3D and ACS-CNNs while being significantly faster (only marginally slower
than 2.5D-CNNs). Note that ACS-CNNs are much slower because among all the
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Layer # C 2.5D CNN 3D/ACS CNN Q-CNN (our)
Preprocessing 64 - - Q-converter

2×

{
Conv.

Norm.
= ⋆

16λ
Conv2d Conv3d Conv2d
BNorm2d BNorm3d Q-BNorm2d

32λ
Conv2d Conv3d Conv2d
BNorm2d BNorm3d Q-BNorm2d

Pool. - Avg2d Avg3d Q-Avg2d
⋆ ×4
G. Pool. - G. Avg2d G. Avg3d G. Q-Avg2d
Dense 64λ Linear Linear Q-Linear
Dense n Linear Linear Q-Linear
λ 1.66 1.70 / 1.00 0.80

Table 1: Architecture used for the different methods. C is the number of output
channels, n the number of classes and W the size of the input image. λ is
the parameter that tweaks the number of filters (# C). The ⋆ symbolizes a
convolutional block that is repeated at two different positions in the network.

OrganMNIST3D NoduleMNIST3D SynapseMNIST3D
Models Acc. Time Acc. Time Acc. Time

2.5D-CNN
58.14 234 83.51 236 70.51 244
±3.57 ±8 ±1.46 ±7 ±6.22 ±8

3D-CNN
72.44 383 85.46 386 83.55 410
±3.73 ±4 ±1.96 ±3 ±4.46 ±3

ACS-CNN
71.52 994 83.82 1030 79.15 1098
±1.52 ±4 ±2.82 ±5 ±3.78 ±4

Q-CNN (our)
72.14 236 85.64 239 70.06 252
±2.38 ±7 ±0.80 ±7 ±3.19 ±7

Table 2: Mean accuracy (%) and training time (sec) along with the standard
deviations for 10 independent runs. Highest performance are highlighted in bold.

filter parameters, many of them are non-trainable (they are the duplication of
2D filters along a new dimension). Therefore, as we compare models with similar
number of trainable parameters, ACS-CNNs have to perform a larger number of
numerical operations. Regarding the last dataset, observations are different as
both 2.5D-CNNs and Q-CNNs seem to struggle and achieve similar performances
significantly below those obtained by 3D-CNNs. However, one may notice that
ACS-CNNs also achieve lower performances, which may indicate that it is more
difficult to break free from the 3D representation for this task.

7 Conclusion and Limitations

In this work, we present a new approach to be able to perform 2D convolu-
tions when working with 3D images with the objective to save computational
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resources. This is achieved by drawing inspiration from the works of Yang et
al. [4] and Zhou et al. [2] by building a 2D representation of 3D images through
the consideration of different views and the use of quaternions.

Even though this work is still a first step toward this direction and future
work should be performed to further assess the performances of Q-CNNs (for
example, by tackling segmentation tasks), we show promising preliminary re-
sults. Q-CNNs are able to achieve better or state-of-the-art performances on
two among the three datasets considered, while being significantly more effi-
cient. Indeed, quaternion convolutions inherit from O

(
W 2

)
time and space

numerical complexities of 2D convolutions, while ACS and 3D convolutions ex-
hibit O

(
W 3

)
ones (W being the spatial resolution of the input). Thanks to the

use of linear projections for the conversion of 3D images into 2D quaternion im-
ages, the difficulty of 2.5D-CNNs to capture large 3D contexts can be mitigated.
Furthermore, the use of quaternions make it easier for the network to capture
correlations among the different channels.
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