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Abstract. The success of deep learning has been based on smooth
loss functions that can easily be optimized using gradient descent and
an off-the-shelf optimizer. However, training a neural network for a new
application is not trivial as it requires many hyperparameters to be tuned.
Several issues exist such as overfitting and underfitting. Many applications
allow for some errors to be made, although, traditional learning objectives
will influence the training in all cases except the one perfect prediction is
made. In this work, constraints are proposed to replace the cross-entropy
or the mean squared error to allow the neural network to make some errors.
These errors can be set in advance to reflect how accurate the predictions
of the neural network need to be. For each loss function, it is shown on two
different data sets that the proposed constraint based learning performs
similarly or even outperforms the standard loss functions. Moreover, in
the case of classification problems, the constraints can result in predictions
with significantly higher probability on a test set.

1 Introduction

Deep learning has been successfully applied in a wide range of applications in
recent years. These successes occur mostly in applications where plenty of data
is available. However, for several applications only a limited amount of data is
available. When applying deep learning to cases where data is scarce, suboptimal
generalisation abilities are expected. For example, a large neural network can
easily overfit on a small training set. Moreover, neural networks are typically
trained using gradient descent or a variant which require learning objectives to
be smooth. However, smooth objectives might only approximate the exact target
as is defined by end-users. For example, in the context of semantic segmentation,
there might be several segment boundaries that slightly differ from each other
which are all equal from a user point of view. However, a loss function does not,
typically, assign the same loss value to all these predictions. Another example,
in the context of multi-class classification problem, a neural network is expected
to provide a single label for the input. It is not crucial in the standard setting
with which probability this label is predicted. These examples show that the
neural network does not need to predict the exact groundtruth label but rather

∗This research received funding from the Flemish Government (AI ResearchProgram). This
research has received support of Flanders Make.

167

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  



a prediction which is sufficiently close. This is closely related to improving the
probability of a neural network to predict a plausible prediction [1].

We propose to train a neural network with non-smooth objectives that are
more closely related to the user requirements for a given application. These
non-smooth objectives are formulated as constraints, leading to a constraint
satisfaction problem (CSP) for the weights of the neural network. Previous
work [2] exists that aim at satisfying constraints, in the context of CSPs, in
combination with a traditional loss function, but no method has been applied to
train a network completely by solving a CSP. Moreover, DeepSADE [2] uses only
the CSP to train the final layer of a neural network and not the full network. In
this text, a direct comparison is made between the usage of a loss function in an
optimization problem and a CSP for training a neural network.

Our main contributions are: (i) the reformulation of a loss based neural net-
work learning approach to a CSP which is solved by Constraint Guided Gradient
Descent (CGGD) [3] such that the learning objective is defined more closely to
that defined by the user, (ii) an extensive experimental evaluation which in-
dicates that the proposed CSPs obtain similar or better results compared to
traditional loss functions.

The remainder of this text is structured as follows. The set of constraints
that can be used as alternative to some traditional loss functions are described
in Section 2. In Section 3, an experimental evaluation of the proposed objectives
compared to the traditional loss functions are described. Afterwards, the results
are shown and discussed in Section 4. Finally, the text is concluded with possible
directions for future work in Section 5.

2 Constraint based learning

Within this section, a supervised multi-class classification problem and a super-
vised regression problem are considered for a neural network. For the supervised
multi-class classification problem, it is common to use an output layer with soft-
max activation function and use Cross-Entropy (CE) as a loss function. The
softmax activation function results in the output of the neural network defin-
ing a probability distribution. Therefore, if a single output neuron has a value
strictly larger than 0.5, then the corresponding class would be the networks pre-
diction for a Top-1 accuracy. In other words, if there are N possible classes and
x is an example of class Ci, then it is sufficient to find weights W of a neural
network Φ such that Φ(x)i > 0.5, where Φ(x)i is the value of the i-th output
neuron corresponding to class Ci. Moreover, the negative classes can also be
required to have a relatively small probability. For example, the predicted prob-
abilities for a sample of class Ci should be below 0.1 for all classes Cj with j ̸= i.
This leads to the following set of constraints for the CE with variable bounds T
and F

∀x ∈ X : Φ(x)Ci
> T and Φ(x)Cj

< F, for j = 1, . . . , N, and j ̸= i. (1)

A similar reasoning can be performed for a supervised regression problem,
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which is often trained using the Mean Squared Error (MSE). Indeed, a relatively
small deviation of the ground truth is allowed. Therefore, the weights should
be changed only in the case where the difference between the prediction and the
groundtruth is larger than some threshold. For example, an alternative set of
constraints for the MSE is

∀x ∈ X : Φ(x) ∈ (y − δ, y + δ), (2)

where y is the groundtruth of x, and δ > 0 is the number defining the allowed
deviation of Φ(x) from y.

The problems should be solved by finding a suitable set of weights W such
that all constraints are satisfied on the training set. This requires an algorithm
that can check these constraints and adjust the weights such that eventually
the predictions should satisfy the constraints. The performance metric used to
check how many constraints are satisfied is the Satisfaction Ratio (SR) [3], which
is the ratio of the number of satisfied constraints by the total number of con-
straints. The CGGD [3] framework supports this setting as it solves constrained
optimization problems, even in the case where no objective function is present
but some constraints are. In other words, CGGD can also be applied to CSPs.
In order to apply CGGD, it is required to define the direction of the constraints
dirC for each constraint. However, all constraints above are bound constraints
as they define a lower or upper bound on some prediction of the network. When
a lower bound is not satisfied, then dirC can be set to −1 as this will increase the
prediction after a gradient descent update. When a upper bound is not satisfied,
then dirC can be set to 1 as this will decrease the prediction after a gradient
descent update.

3 Experiments

The supervised multi-class classification task is evaluated on MNIST and CI-
FAR10. The publicly available validation sets are used as test sets and the best
network during training is determined on the training set. The criterion used to
determine the best network is the best value of the loss function when training
with a loss function and the highest satisfaction ratio if the training is done using
the constraints. A LeNet-5 network is used for the experiments on MNIST. A
VGG-7 network is used for the experiments on CIFAR10. The constraint based
learning (Con) for the CE (1) has been tested for multiple bounds. More spe-
cific, it is tested for (T, F ) ∈ {(0.45, 0.1), (0.65, 0.1), (0.85, 0.1), (0.75, 0.05),
(0.85, 0.05), (0.95, 0.05)}. The best results are reported in bolt if they are signif-
icantly different according to a t-test with 0.01 p−value. The supervised regres-
sion task is evaluated on the Bias correction1 (BC) data set and Family income2

(FI) data set as described in [3]. The constraint based learning (2) for the MSE
is ran for δ ∈ {0.05, 0.005}. The experiments on BC and FI use a multi-layer

1Available on https://archive.ics.uci.edu/ml/datasets/Bias+correction+of+

numerical+prediction+model+temperature+forecast.
2Available on https://www.kaggle.com/grosvenpaul/family-income-and-expenditure.
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T F CE Accuracy SR

CE 0.45 0.1 0.0512± 0.0020 0.9929± 0.0004 0.9377± 0.0081
Con 0.45 0.1 0.0390± 0.0016 0.9913± 0.0003 0.9958± 0.0001

CE 0.65 0.1 0.0522± 0.0030 0.9925± 0.0003 0.9367± 0.0072
Con 0.65 0.1 0.0271± 0.0005 0.9912± 0.0004 0.9957± 0.0001

CE 0.85 0.1 0.0505± 0.0029 0.9927± 0.0007 0.9352± 0.0064
Con 0.85 0.1 0.0259± 0.0008 0.9912± 0.0004 0.9958± 0.0001

CE 0.75 0.05 0.0524± 0.0032 0.9929± 0.0005 0.9325± 0.0030
Con 0.75 0.05 0.0279± 0.0012 0.9905± 0.0006 0.9954± 0.0001

CE 0.85 0.05 0.0531± 0.0042 0.9929± 0.0003 0.9371± 0.0070
Con 0.85 0.05 0.0299± 0.0014 0.9902± 0.0005 0.9954± 0.0001

CE 0.95 0.05 0.0540± 0.0048 0.9929± 0.0004 0.9333± 0.0063
Con 0.95 0.05 0.0349± 0.0018 0.9899± 0.0006 0.9953± 0.0001

Table 1: The mean and standard deviation of the CE and the SR on the test
set of MNIST for CE and constraint based learning (Con).

perceptron [3]. No regularization was used during training as regularization al-
ters the local minima of the loss function and introduces a preference between
different solutions that satisfy all the constraints for constraint based learning.
The latter is undesirable as this adjusts the space of optimal predictions under
the constraints and the CSP becomes a constrained optimization problem.

The baseline method for the classification task is obtained by training with
CE. The baseline method for the regression task is obtained by training with
MSE. The hypothesis is that the proposed method performs equally well or out-
performs the baseline method. All methods are trained with 4 pseudo-random
seeds for initialization until convergence, resulting in possibly a different num-
ber of epochs before convergence for each method and each pseudo-random seed.
The initializations are kept the same for the different methods. Next to the loss
function, the classification task is evaluated with the Top-1 accuracy and the
Satisfaction Ratio (SR), which is the ratio between the satisfied constraints over
the total amount of constraints. For a fair comparison, no tuning of the hyper-
parameters is performed. Therefore, achieving state-of-the-art performance is
not the goal of this work.

4 Results & Discussion

First, the results for the classification problem on the test set of the MNIST data
set are discussed Table 1. The small differences between CE are a consequence
of the usage of different seeds. Even though the difference in Top-1 accuracy
is significant, the difference is relatively small for all choices for T and F . The
difference increases as a function of T . In terms of CE, there are large differences.
It appears that a small T and a large F results in a low CE for the constraints as
objective. This is expected as in this case values that are allowed are closer to 0.5
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T F CE Accuracy SR

CE 0.45 0.1 0.3889± 0.0107 0.8762± 0.0032 0.8352± 0.0025
Con 0.45 0.1 0.3898± 0.0070 0.8758± 0.0029 0.9725± 0.0003

CE 0.65 0.1 0.3897± 0.0094 0.8757± 0.0027 0.8335± 0.0027
Con 0.65 0.1 0.4123± 0.0156 0.8761± 0.0030 0.9725± 0.0002

CE 0.85 0.1 0.3898± 0.0051 0.8761± 0.0018 0.8328± 0.0031
Con 0.85 0.1 0.4677± 0.0051 0.8780± 0.0020 0.9717± 0.0004

CE 0.75 0.05 0.3894± 0.0059 0.8752± 0.0018 0.7904± 0.0029
Con 0.75 0.05 0.4996± 0.0104 0.8770± 0.0019 0.9720± 0.0004

CE 0.85 0.05 0.3895± 0.0100 0.8756± 0.0007 0.7895± 0.0029
Con 0.85 0.05 0.5553± 0.0063 0.8757± 0.0010 0.9718± 0.0004

CE 0.95 0.05 0.3900± 0.0079 0.8753± 0.0016 0.7867± 0.0032
Con 0.95 0.05 0.6628± 0.0104 0.8739± 0.0013 0.9718± 0.0004

Table 2: The mean and standard deviation of the CE and the SR on the test
set of CIFAR10 for the CE and constraint based learning (Con).

which results in a small CE. Moreover, when T is large and F is small there is on
average and in terms of the standard deviation a significantly smaller CE except
for (T, F ) = (0.95, 0.05). In other words, large values for T and small F lead to
the model being more confident on the test set as the probabilities for the ground
truth class label is larger and for all other classes smaller compared to models
that are trained using the CE. The SR is consistently higher for constraint based
learning, leading to high probabilities when the predicted class is correct.

Second, the results for the classification problem on the test set of the CI-
FAR10 data set are discussed Table 2. The CE is similar or slightly higher for
constraint based learning. In terms of Top-1 accuracy no significant differences
can be observed. For the SR there is a large difference between the CE loss
and the constraint based learning. This shows that when a correct prediction
is made by the neural network that a large probability is assigned to this pre-
diction. Therefore, it might be that when the resulting prediction of the neural
network has a relatively low prediction that this is closely related to the example
being out-of-distribution compared to the training set.

Third, the results for the regression problem on the test set of the BC data set
are discussed Table 3. The results for MSE are the same when the MSE is used
as loss function for the different values of δ as the value of δ has no influence on
the MSE or the training procedure in this case. The value for SR does change
for different values of δ as a larger value for δ results in a constraint that is
easier to satisfy as the feasible interval is larger. There are no large differences
in terms of MSE and SR when a relatively small value for δ is used. Therefore,
it can be concluded that on this data set and for this network architecture the
performance is similar for the proposed constraint based learning.

Fourth, the results for the regression problem on the test set of the FI data
set are discussed Table 3. The mean and standard deviation of the MSE is lower
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BC FI

δ MSE SR MSE SR

MSE 0.005 0.0020± 0.0002 0.5448± 0.0063 0.0018± 0.0005 0.5779± 0.0104

Con 0.005 0.0020± 0.0002 0.5538± 0.0045 0.0016± 0.0004 0.6774± 0.0244

MSE 0.05 0.0020± 0.0002 0.8925± 0.0054 0.0018± 0.0005 0.9418± 0.0066
Con 0.05 0.0021± 0.0001 0.8929± 0.0065 0.0017± 0.0004 0.9545± 0.0047

MSE 0.1 0.0020± 0.0002 0.9800± 0.0068 0.0018± 0.0005 0.9854± 0.0037

Con 0.1 0.0026± 0.0003 0.9771± 0.0072 0.0038± 0.0002 0.9905± 0.0024

Table 3: The mean and standard deviation of the MSE and the SR on the BC
data set and FI data set for the MSE and constraint based learning (Con).

for the constraints when δ ∈ {0.005, 0.05}. The similar observation holds for the
mean and standard deviation of the SR for these values of δ with a significantly
large difference for δ = 0.005. This illustrates that allowing these small errors
during training can lead to a better performance on a test set. In particular,
there is a higher probability of achieving a similar error on the test set as the
SR is 0.1 bigger for using the constraints with δ = 0.005 compared to using the
MSE. Hence, on this data set and for this network we can conclude that the
constraints with a small error, that is, a small value for δ, the performance of
the resulting model is better.

5 Conclusion & Future work

The proposed CSP reformulated alternatives for the CE loss function and the
MSE loss function have each been tested on two independent data sets. It is
shown that the constraint based learning performs similarly or better than the
traditional loss functions, resulting in a valuable alternative to train networks.

An important direction for future work is to test the constraints on a task
where traditional loss functions are known to often overfit. The hypothesis is
that the constraints might lead to a lower probability of overfitting. A second
direction for future work is to investigate alternatives for other loss functions
such as the Kullback-Leibler divergence loss.
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