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Abstract. Adversarial training is widely used to enhance classifier ro-
bustness. Several improvements have been proposed including different
forms of distillation and self-alignment. Here, we propose a novel loss
function combining these two approaches, while not using the hard ground
truth labels directly. Our new loss function is demonstrated to simultane-
ously improve both the robustness and the accuracy of some well-known
competing solutions. This is a step towards combatting the robustness-
accuracy tradeoff, a crucial issue in adversarial training. Our method also
reduces the variance of the accuracy over the classes in the experimental
scenarios we examined, leading to a more balanced model.

1 Introduction

It has long been known that tiny adversarial input perturbations might lead to
large output error in most machine learning models [7]. Adversarial training [2],
where adversarially perturbed training samples are used as augmentation, is the
most widely adopted approach to improve adversarial robustness.

Several improvements have been proposed, including the application of soft
labels. One source of soft labels is the trained model itself. Logit pairing [8] and
later on, TRADES [9], both use this self-alignment approach, where the outputs
of the network on the clean and perturbed example are aligned with the help of
the loss function.

Distillation [1] methods have also been proposed that use the soft output of
a teacher network as regularization. RSLAD [11] and IAD [10] are examples
where a robust teacher network is used. HAT [4], however, uses a standard
teacher (trained on clean samples only), an approach that we also follow, because
training a robust teacher is about an order of magnitude more expensive than
training a regular network. Also, our goal is not compressing a network that is
already robust, but instead, to improve adversarial training.

Here, as sources of soft labels, we combine self-alignment and distillation
using a standard teacher. We propose to align the logit layer to that of a standard
teacher network, and to align normal and adversarial input logits, minimizing
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their mean squared error (MSE). At the same time, we do not rely on the hard
labels of the training set directly. Note that TRADES [9] and HAT [4] both rely
on hard labels as ground truth, while our method relies solely on the guidance
of a standard teacher network.

Our contributions are the following:

• We propose a novel loss function using both self-alignment and distillation,
but no hard labels

• We show empirically on two benchmark datasets that our loss function
simultaneously achieves a better clean and robust accuracy than competing
solutions

• We observe that our loss function achieves a more even distribution of
accuracy (both clean and robust) over the classes than competing methods

2 Background

Here, we first describe the basics of adversarial training. Let f(x; θ) denote a
neural network with parameters θ. Assuming a classification problem, f outputs
a probability distribution over the classes: f : D → [0, 1]C , where C is the
number of classes and D is the data domain.

Assuming that the distribution of labeled data (x, y) is p(x, y), the goal of
adversarial training is to solve the optimization problem

argmin
θ

Ep(x,y)[L(xadv, y, θ)], where xadv = argmax
x′: ∥x′−x∥p≤ϵ

Ladv(x
′, y, θ). (1)

Here, xadv is the adversarial example based on attacking the natural example
(x, y) with a perturbation of a bounded Lp distance ϵ. Here, we will use the
commonly adopted L∞ norm. The inner maximization problem is normally
approximated with a basic iterative method using projected gradient descent
(PGD) [2].

There are several proposals for defining adversarial training that differ in
their choice of losses L and Ladv. The original choice was simply using the
cross-entropy CE(f(x; θ), y) for both losses [2], thus using only the hard labels
y. More complex loss functions have also been proposed for both L and Ladv that
use combinations of the softmax output and the logit layer of f , using different
distance functions including, for example, mean squared error and Kullback-
Leibler (KL) divergence. For example, TRADES [9] defines

L(x, y, θ) := CE(f(x; θ), y) + βKL(f(x; θ), f(xadv; θ)), (2)

Ladv(x
′, y, θ) := KL(f(x; θ), f(x′; θ)), (3)

where β is a hyperparameter. Note that TRADES applies self-alignment in the
second term of the loss L, where the clean and adversarial inputs are required
to result in the same soft output.

Another source of guidance based on soft labels is knowledge distillation [1, 4,
11, 10] where the soft output of a teacher model is aligned to that of the student
model. Our proposed loss function will use both self-alignment and distillation.
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3 Our Loss Function

For our loss function, we require a pre-trained standard model g(x) that we use
as a teacher model. The teacher is frozen throughout the adversarial training.
Since training a standard model is much cheaper than adversarial training, it is
feasible to train our own teacher model as part of the initialization. Here, model
g will have the same architecture as the student model (that is, the model that
we train adversarially), but this is not a strict requirement.

Given an example (x, y), we define our loss function as

L(x, y, θ) :=β[KL(f(x; θ), g(x)) +KL(f(xadv; θ), g(x))]+

KL(f(x; θ), f(xadv; θ))
(4)

and Ladv is identical to that of TRADES given in (3). Note that none of the
functions depend directly on the hard label y, the teacher network is responsible
for guiding the training alone. This is achieved in the first term (multiplied by
hyperparameter β) where both the regular and adversarial softmax outputs of
the student are aligned with the teacher network. This solution promotes both
clean and adversarial accuracy, based on informed soft labels, which will allow us
to preserve more clean accuracy while achieving robustness. The self-alignment
term is also identical to that of TRADES (see (2)).

The same ideas can be implemented based on the logit layers as well, in-
stead of the softmax output. Assuming that our networks have a logit layer
that precedes the final softmax output, we denote the logit layer of the student
network f(x; θ) by z(x; θ), that is, f(x; θ) = softmax(z(x; θ)). The logit layer of
the teacher g(x) is denoted by v(x). The logit version of our loss is implemented
using mean squared error (MSE):

L(x, y, θ) :=β[MSE(z(x; θ), v(x)) +MSE(z(xadv; θ), v(x))]+

MSE(z(x; θ), z(xadv; θ)),
(5)

Ladv(x
′, y, θ) := MSE(z(x; θ), z(x′; θ)). (6)

Here, the self-alignment term is called logit pairing [8].

4 Experimental Results

In this section, we empirically evaluate the performance of our method on two
benchmark datasets: Cifar10 and Cifar100 [12]. First, we investigate the effect of
our hyperparameters, then we compare our method with four baselines: SAT [2],
TRADES [9], HAT [4] and normal training with cross-entropy on hard labels.

Training Setup. We train ResNet-18 [5] networks using the SGD optimizer with
Nesterov momentum 0.9 [15] and weight decay 0.0005. We use cyclic learning
rates [6] with cosine annealing and a maximum learning rate of 0.2. We train all
the models for 100 epochs with a batch size of 128. For computing adversarial
examples during training, we apply the L∞-PGD with the following parameters:
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Table 1: The effect of hyperparameters on accuracy and robust accuracy. The
results of our logit-based loss are shown. ∆ represents the performance improve-
ment over our softmax-based loss (positive values mean that the logit-based
variant is better).

Cifar10 Cifar100
β Acc. Acc. ∆ AA AA ∆ Acc. Acc. ∆ AA AA ∆

0.05 81.12 1.16 50.90 0.99 52.88 -2.85 22.39 -1.94
0.1 84.06 2.44 50.76 1.13 59.08 1.40 23.93 -1.16
0.2 86.33 1.62 50.56 1.10 62.25 3.51 24.20 0.64
0.3 86.92 0.99 49.84 1.18 63.96 4.39 23.82 0.99
0.4 87.71 3.03 48.97 1.71 65.12 4.98 23.32 1.15

Table 2: Comparison with baseline methods.
Cifar10 Cifar100

Epoch Method β Acc. (%) AA (%) β Acc. (%) AA (%)

Early Stopping

Standard - 95.11 0 - 76.49 0
SAT - 84.96 47.17 - 56.41 22.49
TRADES 5.0 84.09 50.26 5.0 57.23 23.83
HAT 2.5 85.45 49.68 3.5 58.39 23.78
Ours 0.2 86.33 50.56 0.2 62.25 24.20

Last (100.)
SAT - 85.71 46.26 - 58.93 22.63
TRADES 5.0 84.05 49.97 5.0 57.24 23.72
HAT 2.5 85.9 49.14 3.5 58.39 23.77
Ours 0.2 86.07 50.63 0.2 62.68 24.16

ϵ = 8/255, step size α = 2/255, and K = 10 iterations. We trained all the
methods with the same settings (note that for our baselines we got better results
with these settings than with those reported in the original publications).

Evaluation. We used early stopping [14]: we selected the best model based on
the robustness of the model to the 20 iteration PGD attack on the validation
set. The approximate robust accuracy, we used the full attack set of AutoAttack
(AA) [13]. We report the average scores over three runs.

Discussion. Table 1 compares the two variants of our approach: the logit-
based (4) and the softmax-based (5,6) variant, under several settings of β. It is
clear that β controls the tradeoff between robustness and accuracy, and β = 0.2
represents a good compromise for both datasets. Also, the logit variant is better
in most settings, however, we do note that on CIFAR100, the best robust accu-
racy is achieved with the softmax loss and β = 0.1, namely 25.09 according to
AA. Table 2 compares our logit-based variant with methods from related work.
The parameter (β) of the baseline methods is adopted from the recommenda-
tions in the corresponding publications. Note that we slightly improved the
previously published baseline results due to our different training setup. Our
method improves both clean and robust accuracy simultaneously, compared to
the baselines.
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Fig. 1: t-SNE visualizations of the clustering of CIFAR10.

Table 3: Class-wise standard deviation of clean and robust accuracy (%).
Cifar10 Cifar100

Model Clean Robust Clean Robust

Ours 6.9 16.0 15.3 17.9
HAT 8.8 16.5 15.7 17.9
TRADES 9.0 17.0 16.3 18.3
SAT 9.4 17.8 19.0 18.2

5 More Balanced Class-wise Robustness

A main advantage of applying only soft labels (and no hard labels at all) is that
we can account for the possibility that some—otherwise correctly predicted—
classes might be less confident in general due to, for example, being similar
to other classes. This way, we can avoid biasing the training by overconfident
targets represented by the one-hot encoded hard labels.

To support this observation, we examined the standard deviation of the ac-
curacy over the classes. That is, we compute the clean and robust accuracy
(using AA) within each class over the test set and compute the class-wise stan-
dard deviation, as shown in Table 3. Indeed, the table confirms that our method
consistently achieves the most uniform distribution in all the metrics.

To further illustrate the better balance between the classes, we visualize the
clustering of each of the models we discussed in Section 4 using t-SNE [16]. We
randomly selected 300 samples from each class in the Cifar10 test set, and we
computed adversarial examples based on these samples using the setup described
in Section 4. Then, for each model, the logit layers are computed and visualized,
as shown in Figure 1. Colors correspond to class labels.

6 Conclusions

We have argued that using both distillation and self-alignment, while avoiding
the direct application of hard labels, is a promising approach towards combatting
the robustness-accuracy tradeoff. Indeed, we could simultaneously improve both
the clean and robust accuracy of some well known methods such as TRADES
and HAT, while achieving a well-balanced accuracy distribution over the classes.
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While a larger-scale empirical evaluation would further strengthen our results,
the measurements we presented provide sufficient validation to warrant the ex-
ploration of the idea further.
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