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Abstract. Generalization in machine learning involves introducing in-
ductive biases that restrict the solution space of the learning problem,
allowing for the inductive leap. In this paper, we show the existence of
different inductive biases between convolutional and recursive Deep Graph
Networks (DGN) by applying Explainable AI (XAI) methods as model in-
spection techniques. We show that different architectures can perfectly
solve the given tasks by learning different labelling policies. Our results
promote the usage of different architectures to address a task and raise
warnings on the assessment of XAI techniques as their benchmarks may
contain more ground truths than those provided.

1 Introduction

Deep Graphs Networks (DGNs) [1] are neural networks able to directly learn a
function on complex graph-structured data. However, while able to achieve high
performance, DGNs are usually regarded as black-boxes, since their complexity
prevents recognizing the label assignment policies. As a consequence, to bet-
ter understand their functioning and ensure their trustworthiness [2], different
techniques to analyze DGNs’ inner workings have been developed and collected
as part of the field of XAI [3] for DGNs [4]. In this work, we deploy XAI tech-
niques for DGNs as model inspection methods to reveal the presence of different
inductive biases in different message-passing-based DGNs. Specifically, we fo-
cus our attention on recursive and convolutional DGNs as their architectural
differences may focus on different aspects of the problem causing the learning
of different policies to solve graph classification tasks [5, 6]. Our work empiri-
cally tests the following hypothesis: (i) architectures characterized by different
inductive biases can encode in their opaque set of weights different label assign-
ment policies: human-intelligible sets of rules able to associate each graph with
its label; (ii) different policies may match different ground truth (GT) explana-
tions when processed by XAI algorithms. We empirically verify our hypothesis
using the plausibility metric, which quantifies the adherence of the computed
explanations to the GTs, as a proximity measure between the label assignment
policy learned by the models and the one used to label the XAI-ready datasets.
We interpret discrepancies between plausibility metrics across DGNs as indica-
tors of different learned label assignment policies and consequently of different
inductive biases [7]. Our experiments, performed on multiple combinations of
DGNs architectures, XAI datasets, and explainers, prove our hypothesis and
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reveal the existence of a second label assignment policy for three of the four
tested datasets. Moreover, our results show that recursive DGNs feature an
inductive bias aligned with this second policy; revealing a rich landscape of in-
ductive biases and, in turn, multiple useful ways to learn and generalize on graph
data. The contributions of this work are twofold: (i) We empirically show that
different DGN architectures may learn different policies to solve the same prob-
lem, which might be attributed to the existence of different inductive biases for
message-passing-based DGNs; (ii) We prove the existence of at least a second
ground truth in commonly used datasets to benchmark XAI attribution meth-
ods. This raises concerns about the performance assessment of XAI techniques
as low-quality explanation metrics may be due to using a wrong assumed GT
with architectures that show very high predictive capabilities.

2 Background

2.1 Deep Graph Networks

Let G = (V,E) be a graph with V = {v1, ..., vNG
}, NG = |V | its set of vertices,

E ⊆ (V×V ) = {(u, v) | u, v ∈ V } its set of edges, andA ∈ R
NG×NG its adjacency

matrix. We define as xv ∈ R
d, d ∈ N the feature vector of a node v (X ∈ R

NG×d

in matrix form). A DGN is a parameterized function able to learn a mapping
between input graphs G ∈ G and their associated labels y ∈ C by adhering to
the message passing paradigm; a procedure that updates node embeddings hv at
each iteration l. This paper distinguishes two classes of Deep Graph Networks:
convolutional and recursive. Convolutional DGNs map each iteration l of the
message-passing paradigm to a different layer of the architecture; creating deep
models. In this work, we focus on the Graph Isomorphism Network (GIN) [8]:

Hl+1 = MLP
(

(1 + ǫl+1)Hl +AHl
)

(1)

and on the Graph Convolutional (GC) [9] operator:

Hl+1 = f(Wl

1H
l +Wl

2ÂHl) (2)

In GIN, MLP is a multilayer perceptron, and ǫ is a learnable or fixed parameter.
In GC, Wl

1 and Wl
2 are learnable parameters and Â is a weighted adjacency

matrix and f is an activation function. In both architectures H1 = X. Recursive
DGNs, instead, map each iteration l of the message-passing paradigm to an
iterative step of a recursive layer. In this work, we focus on the Graph Echo
State Networks (GESN) [10, 11], an efficient recursive DGN based on Reservoir
Computing [12]:

Hl+1 = f(XW̄l+1 +AHlWl+1) (3)

where H1 = X, f is an activation function, W̄l+1 is a weight matrix introducing
residual connections, and Wl+1 is the recursive weight matrix. The efficiency
and further specific bias of this architecture come from its untrained weight
matrices W̄l+1 and Wl+1 whose careful initialization determines the creation
of a contractive/Markovian dynamical system able to provide meaningful node
embeddings to solve a task.
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2.2 XAI attribution methods

In this work, we use local post-hoc XAI techniques that yield an importance

score to each node in a graph in the form of a mask t̂ ∈ R
NG . Among the many

methods that exist in the literature [13, 4], we focus on: (i) GNNExplainer
(GNNE) [14], a perturbation-based method which optimizes t̂ by maximizing
the mutual information between the original model output and the masked one;
(ii) Integrated Gradients (IG) [15], a gradient-based method which computes
the contributions of the input features to the output prediction relatively to a
baseline point that encodes the complete absence of information; (iii) CAM [16],
a DGN-specific technique based on the observation that the output logits of a
DGN are the weighted sum of the contribution of each node. These contributions
are the importance scores. In addition, we include, as a baseline, a random
explainer returning random importance scores for each input graph.

3 Method

We use XAI techniques as model inspection methods to understand whether
different DGN architectures learn different label assignment policies. We base
our experiments on four different XAI benchmark datasets for which the label
assignment policies are known, and corresponding GT explanations t for each
input graph are provided. We quantify the overlap between the retrieved expla-
nation masks t̂ and the GT explanations t with the plausibility metric which
computes the AUROC score between t̂ and t [12]. Specifically, AUROC com-
putes the Area Under the Receiver Operating Characteristics curve which is
obtained by plotting the values of True Positive Rate (TPR) and False Posi-
tive Rates (FPR) while varying the classification threshold. As a consequence,
it measures adherence of a retrieved explanation to its GT for a single input
graph. We interpret an average low value of plausibility across multiple samples
as a discrepancy indicator between a model learned label assignment policy and
the one used to generate each dataset. As a further step, we manually analyze
the retrieved explanations trying to understand which policy each model learns
to solve the tasks.

4 Experiments and discussion

We tested our approach on four different synthetic binary classification graph
datasets with known label assignment policies. In particular, the BA2Motif
datasets assign class 1 to Barabási-Albert (BA) graphs linked to a house motif
and class 0 to BA graphs linked to a 5-nodes cycle motif; BA2grid assigns class
1 to BA graphs linked to a 3x3 grid motif and class 0 to plain BA graphs;
GridHouse assigns class 1 to BA graphs linked to a 3x3 grid and a house motif,
class 0 to BA graphs linked to either the grid or the house; finally HouseColors
assigns class 1 to BA graphs linked to at least one green house motif and class
0 to BA graphs linked to at least one blue house motif. This latter dataset is
the only one with meaningful node feature vectors as they one-hot encode colors
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(blue, green, red); the others have constant and meaningless input features. We
partitioned each dataset into training (80%) and test (20%) sets stratifying the
splits following the label distributions and we trained a GESN, GIN, and GC
model performing model selection with 5-fold cross-validation on the training
set and model assessment on the hold-out test set. The best model of each
trained architecture achieved perfect performance over training, validation, and
test splits (accuracy of 1), meaning that a perfect label assignment policy was
learned by each model. Afterward, we applied the XAI attribution methods and
computed the plausibility metric to measure the alignment between the learned
label assignment policies and the ones used to generate each dataset.

RandomExplainer GNNExplainer IntegratedGradient CAM

GESN GIN GC GESN GIN GC GESN GIN GC GESN GIN GC
BA2grid 0.495 0.495 0.495 0.557 0.545 0.564 0.808 0.863 0.904 0.806 0.954 1.0
BA2Motif 0.512 0.512 0.512 0.367 0.704 0.843 0.776 1.0 0.893 0.769 0.911 0.843
GridHouse 0.505 0.505 0.505 0.602 0.543 0.599 0.777 0.834 0.823 0.696 0.903 0.953
HouseColors 0.505 0.505 0.505 0.887 0.517 0.843 0.963 0.994 0.947 0.994 0.99 0.996

Table 1: Plausibility of each model and explainer pair with respect to the label
assignment policies used to generate each dataset.

Results, as introduced in Table 1, allow for the examination of multiple
factors. First, GNNExplainer-based plausibility values are most often closer
to the ones obtained with the RandomExplainer than to those obtained with
IG or CAM. As a consequence, we did not further analyze its explanations as
we consider them unreliable. Second, even if all models were able to perfectly
distinguish the two classes, only the pairs IG-GIN on BA2Motif and CAM-
GC on BA2grid perfectly retrieved the expected explanation (plausibility value
equals 1). Lastly, the plausibility values obtained with IG and CAM on the
HouseColor dataset all reach up to 0.94. We consider this result an indicator that
all tested architectures learned the label assignment policy used to generate the
dataset. However, this consideration does not hold for the other three datasets
where consistent gaps have been found between the plausibility values associated
with GESN and the ones associated with GIN and GC. We traced back this
behavior to the existence of a secondary label assignment policy. Specifically,
it is possible to generate perfect classifiers for the BA2grid, BA2Motif, and
GridHouse datasets by only using as a feature the average degree of the input
graphs. In Table 2 we show that the maximum average degree characterizing
class 0 graphs is always lower than the minimum average degree characterizing
class 1 graphs for these three datasets; proving that a threshold between these
two values is enough to distinguish the classes. Moreover, as the minimum
average degree for class 1 graphs is always above 2, we can associate the novel
policy with a new set of GT explanations. Specifically, we identify the nodes
with a degree greater than 3 as relevant, since they move the average toward
class 1. Plausibility values for the novel GT are shown in Table 3 and they clearly
reveal that GESN was solving the BA2grid, BA2Motif, and GridHouse tasks by
learning this second policy. In fact, all values based on CAM and IG increased
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Class 0 Class 1

min max min max
BA2grid 1.87 1.93 2.20 2.4
BA2Motif 2 2 2.08 2.08
HouseColors 2.03 2.35 2.03 2.35
GridHouse 2.06 2.3 2.34 2.5

Table 2: Average degrees across all datasets grouped by target class.

up to a score of 1 with the only exception of IG-GESN on the GridHouse dataset
(0.987). Moreover, the perfect scores achieved by the pairs IG-GIN on BA2Motif
and CAM-GC on the BA2grid datasets significantly dropped; a sign that GIN
and GC were effectively solving these tasks based on the first label assignment
policy. In addition, the CAM-based scores generally decreased in contrast to the
IG-based scores. We attribute this latter behavior to the usage of the gradient as
a mean to compute importance scores for nodes with meaningless input features
as in these tasks the most influential nodes on the model output would be the
ones having a higher degree.

RandomExplainer Integrated Gradient CAM

GESN GIN GC GESN GIN GC GESN GIN GC
BA2grid 0.49 0.49 0.49 1.0 1.0 0.952 1.0 0.822 0.731
BA2Motif 0.496 0.496 0.496 1.0 0.412 0.958 1.0 0.812 0.965
GridHouse 0.498 0.498 0.498 0.987 1.0 1.0 1.0 0.847 0.9

Table 3: Plausibility of each model and explainer pair with respect to the newly
discovered label assignment policy.

We interpret these results as experimental proof that, for these datasets
with meaningless node features, recursive (with the GESN implementation),
and convolutional architecture can solve the same task by learning different
label assignment policies that we attribute to the existence of different inductive
biases.

5 Conclusions

In this work, we used XAI attribution methods as model inspection techniques to
empirically verify the existence of different inductive biases in convolutional and
recursive DGNs. Our results show that three different tasks can be solved based
on two different label assignment policies and that recursive DGNs (GESN) fea-
ture an inductive bias that makes them learn one of such policies while the other
is preferred by convolutional (GIN, GC) DGNs; revealing multiple opportunities
to learn and generalize on graph data. This research impacts the Machine Learn-
ing field for graph-structured data and the XAI field for DGNs. In particular,
showing that different message-passing-based architectures can learn different
label assignment policies should encourage practitioners to test multiple archi-
tectural variants to solve a given problem and use XAI techniques to check
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whether those variants have learned different policies to solve the task. On the
XAI field, instead, our results raise concerns about the current benchmarking
processes of XAI attribution methods as even simple synthetic tasks may in-
volve multiple GT explanations, some of which may not be known but could
be retrieved by an explainer. Consequently, some explainers may underperform
with some architectures if the used GT does not match the learned label as-
signment procedure. Future works include the extension to real-world datasets,
other architectures, and XAI attribution methods.
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