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Abstract. We present a numerically robust, computationally efficient
approach for non-I.I.D. data stream sampling in federated client systems,
where resources are limited and labeled data for local model adaptation
is sparse and expensive. The proposed method identifies relevant stream
observations to optimize the underlying client model, given a local labeling
budget, and performs instantaneous labeling decisions without relying on
any memory buffering strategies. Our experiments show enhanced train-
ing batch diversity and an improved numerical robustness of the proposal
compared to existing strategies over large-scale data streams, making our
approach an effective and convenient solution in FL environments.

1 Introduction

The rapid evolution of digital technologies and the exponential growth of data,
coupled with the society’s increased demand for data protection, have under-
scored the significant importance of Federated Learning (FL) [1] in the modern
AI era. This innovative approach to machine learning embodies the shift towards
decentralised data processing that preserves privacy and enables collaborative
learning without direct data exchange. The relevance of FL extends across a
wide range of sectors, particularly where data protection, real-time analytics
and security are crucial, such as healthcare, finance, automotive and manufac-
turing [2, 3, 4]. The necessary extension of FL to streaming data [5] in this
context poses new challenges due to its real-time nature and source variabil-
ity, demanding instant decision making and model adaptation in high-volume
data processing pipelines that operate under resource contraints [6]. Given the
voluminous nature of data streams and the high costs of data labeling, it is im-
practical and inefficient to process every data point for model training. Selective
sampling plays a critical role in addressing this issue by identifying and selecting
the most beneficial data points for model updates, thereby optimising the learn-
ing process. In general, one key challenge is to develop mechanisms that can
perform this selection accurately and rationally in real-time, while remaining
numerically stable despite iterating over thousands of data points. Efficiently
determining which data points warrant expert labeling becomes a pivotal aspect
of the learning process, particularly in scenarios where labeled data is scarce
or costly to acquire. The ability to strategically focus expert intervention on
the most impactful data points is extensively researched in the field of Active
Learning [7] and can significantly accelerate the learning process and enhance
the overall effectiveness of the FL system.

∗MR is supported through the Bavarian HighTech Agenda, specifically by the Würzburg
Center for Artificial Intelligence and Robotics (CAIRO) and the ProPere THWS scholarship.

57

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  



conveyor belt
input 

conveyor belt
output 

reject

query 

labeling
decision

expert labeling 

classifier

5 9 2

? ? ?

client
S

bottleneckfeature 
extractor

Fig. 1: Sparse sample selection from federated streaming data, examplified by
conveyor belt object scanning on client i: the orange, dashed data flow illustrates
the decision-making algorithm; the red data flow depicts the fine-tuning pipeline.

In this study, we introduce an advanced method that empowers resource-
limited FL clients to select the most valuable samples to refine their neural
network models from streaming data in real-time. This approach prioritizes
resource efficiency and numerical stability. To achieve this, we employ a query
strategy derived from Volume Sampling for Streaming Active Learning [8], which
makes labeling choices based on the penultimate layer representations, within a
conformal FL framework. We modify this strategy for the FL streaming context
by substituting the iterative Woodbury Identity update mechanism [9] – which
adjusts sampling probabilities – with low-rank updates to the lower Cholesky
triangular matrix [10]. This modification simplifies the decision process and
ensures numerical stability across a vast array of streamed data points.

2 Methodology

2.1 Setup and Prerequisites

We consider a FL environment characterized by a central, resource-rich server S
tasked with network orchestration and multiple resource-limited clients indexed
by i, where i “ 1, . . . I as outlined in Fig. 1. Clients operate without long-term
storage, demanding immediate labeling decisions - a unique challenge. The client
model features a core sequence of three components, including a pre-trained
feature extractor fp¨q, a bottleneck module Apψq, and a linear classification
head gp¨q. Given an input sample x observed on client i, the overall decision
function is then expressed as Fipxq “ gpAψi

pfpxqqq. This configuration is aligned
with (but not limited to) the principles outlined in FedAcross [11], a scalable
FL framework designed to handle client adaptation tasks with scarcely labeled
target data. Furthermore, the client i inspects sample xt, seen only once, from
the non-I.I.D. data stream Ui at time t, in which the occurrence of objects is
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not evenly distributed, using an arbitrary sensing device. To address the high
labeling costs and limited resources for a single round of FL on a client edge
device, we introduce a labeling budget k that limits the set of selected samples
Bi, such that |Bi| ď k applies. After exhausting the labeling budget k in the
current FL round, we obtain labels for all samples in Bi from an oracle and refine
the client model by optimizing the cross-entropy loss between Fip¨q’s output and
the acquired labels.
Main contributions: We provide an efficient sampling strategy that performs
an instant decision about current stream sample xt being included in Bi or not
whilst a) sticking to the labeling budget k to address local resource constraints,
b) enforcing batch diversity over all samples within Bi to maximize training
efficiency of the underlying client model and c) keeping the algorithmic response
stable and immediate over a large number of iterative processing steps to enable
unsupervised stream observation over extended time periods.

2.2 Algorithm

The proposed algorithm for deciding whether or not to request a label for sam-
ple xt on client i performs an uncertainty measure on its representation in the
embedding space of the penultimate layer of the underlying model. Therefore,
the employed embedding function is defined over the client-side feature extractor
fi and the bottleneck layer Ai using τipxtq “ Aipfipxtqq, τipxtq P Rd, with d
defining the output dimension of the penultimate network layer. Our method fol-
lows the volume sampling technique proposed in [8] by choosing a sample xt for
labeling with a probability p, proportional to its gradient’s determinantal contri-
bution. Assuming that the underlying client data distribution is non-stationary,
the probability pt is then computed to adhere for the streaming setting with

pt “
qt ¨ τipxtq

T Σ̂´1
t τipxtq

tr
´

1
t Σ̂

´1
t

řt
i“1 τipxtqτipxtq

T
¯ , (1)

where Σ̂´1
t denotes the inverse of the tracking covariance matrix At P Rdˆd over

samples already included in Bi and qt refers to the adaptive labeling frequency
for the current stream observation defined as qt “ pk ´ |Bi|q{p|Ui| ´ tq.

To effectively update and inverse A for each new sample in the limited-
resource regime of a federated client, we employ a Cholesky decomposition-based
low-rank update mechanism [10]. We argue that alternative solutions driven by
Sherman-Morrison-Woodbury formula to update the tracking covariance matrix
after positive rank-1 updates suffer from numerical instabilities, rendering it
impractical for large-scale stream sampling in industrial applications.

Hence, for t “ 0, the algorithm initializes the lower triangular matrix Lt
by calculating the Cholesky decomposition of the (symmetric, positive-definite)

tracking covariance matrix At with At “ LtLt
T . After determination by Equa-

tion (1) that the currently observed sample xt is eligible to be included in Bi, the

updated inverse of the tracking covariance matrix Σ̂´1
t`1 is obtained in two steps:

First, the algorithm performs a positive rank-1 update by adding the sample’s
embedded representation τipxtq to the Cholesky factor Lt with

Lt`1 “ Lt ` τipxtqpτipxtqqT . (2)
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Noting that Equation (2) can be re-written to

Lt`1 “

„

Lt
T

τipxtq
T

ȷT „

Lt
T

τipxtq
T

ȷ

, QT

„

Lt
T

τipxtq
T

ȷ

“

„

Lt`1

0

ȷ

(3)

this problem can be efficiently computed as a product of Givens rotations Q “

Q1 ¨ ¨ ¨Qn, see [12]. Taking advantage of the retained lower triangular structure

of Lt`1, the second step to refactor Σ̂´1
t`1 involves calculating the inverse of the

updated Cholesky factor using Σ̂´1
t`1 “ pLt`1pLt`1qT q´1, which can be solved

efficiently by employing an algorithm based on repeated back-substitions [10].
Subsequently, after having observed all elements of Ui, domain expert labeling is
queried for selected samples in Bi and the labeled batch is added to the training
data set Di for model adaptation on client i. A pseudocode is given in Alg. 1.

Algorithm 1 Federated Stream Sampling

Require: Embedding function τipxq “ Aipfipxqq on client i, unlabeled stream of sam-
ples Ui, adaptive sampling rate q, labeling budget k

1: Initialize t “ 1, Σ̂´1
0 “ λ´1Id Ź regularized by λ for stability

2: Initialize A0 “ 0d,d Ź covariance over all data
3: Initialize Bi “ tu with |Bi| ď k upon additions Ź limit selected samples
4: Initialize L0 = chol(A0) Ź Cholesky lower triangular factorization
5: for xt P Ui do
6: At Ð t´1

t
At´1 ` 1

t
τipxtqτipxtq

T
Ź covariance matrix update

7: pt “ q ¨ τipxtq
T Σ̂´1

t τipxtqtrpΣ̂
´1
t Atq

´1
Ź sampling prob. according to Eq. (1)

8: with probability minppt, 1q:
9: Bi Ð Bi Y txtu

10: Lt`1 Ð cholupdate low rankpLt, τipxtqq Ź update according to Eq. (3)

11: Σ̂´1
t`1 Ð pLt`1pLt`1q

T
q

´1

12: else:
13: Σ̂´1

t`1 Ð Σ̂´1
t

14: end for
15: query labels(Bi) Ź request domain expert labeling
16: return labeled batch Bi for client i model adaptation

3 Experiments

To highlight our sampling strategy’s benefits for large-scale federated streaming
data, we evaluate three key aspects: numerical stability, wall-clock run-
time, and sampling quality in the following experiments, mimicking real-world
scenarios on resource-constrained FL clients.

The first experiment examines the low-rank update mechanism that itera-
tively recomputes the inverse tracking covariance matrix Σ̂´1 after adding a new
sample to B in regards to its numerical stability over a large number of update
cycles. We therefore measure the reconstruction quality by means of relative er-
ror between the directly computed matrix Adir, updated by a randomized vector
v P Rd such thatAdir “ pA`vvT q´1, and the corresponding matrices calculated
employing low-rank update strategies based on both Woodbury formula Awbf

and Cholesky decomposition Acho (ours). The relative error is subsequently
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defined as ∥Awbf ´ Adir∥F { ∥Adir∥F and ∥Acho ´ Adir∥F { ∥Adir∥F , with ∥¨∥F
employing the Frobenius norm. The results of this experiment, traced over
1000 iterative updates with input dimensions d P t256, 1024, 2048u, are shown
in Fig. 2. The experiment demonstrates that our approach achieves faster con-
vergence to a stable error and maintains consistently low relative reconstruction
error rates throughout the iterative process across all input dimensions, in com-
parison to the Woodbury update-based method. It is important to note that,
unlike our technique, the Woodbury update-based method becomes unstable at
higher input dimensions (see fluctuation for d = 2048), underlining the future-
proof suitability of our method for ever-increasing neural network models.
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Fig. 2: Relative matrix reconstruction
error comparison.

Method Complexity d Ø Time
sec ˆ10´3

256 0.76 ˘ 0.53
Direct Opd3q 1024 16.11 ˘ 3.65

2048 111.86 ˘ 14.36
256 0.60 ˘ 0.50

Woodbury Opr2dq 1024 10.96 ˘ 2.52
2048 86.55 ˘ 13.63
256 0.60 ˘ 0.49

Ours Op 1
3d

3q 1024 6.68 ˘ 1.54
2048 45.05 ˘ 6.47

Fig. 3: Algorithmic complexity and av-
erage wall-clock runtime comparison.
Results calculated over three runs.

In the second experiment we evaluate our approach in terms of practical wall
clock computation times on a CPU-based system. Simulating a low-resource edge
device without access to GPU acceleration, we follow exactly the same setup as
explored in the first experiment. The computation times are averaged for each di-
mension over the number of update cycles, see Fig. 3.

Fig. 4: Model decision regions.

Although Woodbury updates (rank r=1)
have lower theoretical operation counts
than Cholesky-based low-rank techniques,
they do not consider the nature of the cal-
culations, granting our method a signifi-
cant advantage in practical implementa-
tions: Our approach operates exclusively
on lower triangular forms, using cheap
back-substitutions and avoiding complex
operations for zero elements of the ma-
trix. This results in compute times that
are on-par or faster in all scenarios.

The third experiment visually confirms
that our approach produces high-quality
samples that can significantly contribute to model training optimization. In
this setup, the (client) model is first fine-tuned on CIFAR-10 training data as
described in [11]. The stream sampling is subsequently performed with our see-
only-once-strategy over the held-back test set of 10.000 images, cast as non-I.I.D.
data stream under artificial feature drift as outlined in [8], with a labeling bud-
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get k = 60. We depict the model’s decision regions and our selected data points
(highlighted white circles) with DeepView [13] after adding randomly chosen
samples for better illustration in Fig. 4. DeepView visualizes neural networks’
decision functions in 2D by applying discriminative dimensionality reduction,
thus revealing how our model classifies data. DeepView’s reliability stems from
its focus on features crucial for decision-making, offering precise insights into a
model’s behavior. The plot confirms on the one hand that the sampling mass is
well-distributed across the data stream by delivering a class-diversified batch B
and on the other hand that the decision-making algorithm tends to choose sam-
ples living near the edge of the model’s decision boundaries (see color-inverted,
magnified area), providing relevant information for the training process.

4 Conclusion

In this work, we introduced a novel sampling strategy for federated streaming
data, driven by a decision making engine that iteratively performs low-rank
updates on the Cholesky factor, efficiently recalculating the inverse covariance
matrix which is employed to evaluate model training importance of an observa-
tion instantly. The experimental results demonstrate that our method not only
ensures numerical stability by reducing the accumulation of round-off errors over
a large number of sampling iterations, but also minimizes computational over-
head and enhances real-time system performance while selecting high-quality
data points to support and improve model adaptation on federated clients.
Future work might explore methods to leverage the expert-labeled samples not
only in the scope of local client personalization, but also for global FL model
enhancements. Code available at github.com/cairo-thws/fed streaming.
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[11] M. Röder et al. Crossing Domain Borders with Federated Few-Shot Adaptation. In Proc.
13th ICPRAM, pages 511–521, 2024.

[12] G. Golub et al. Matrix Computations, pages 338–341. JHU Press, 20134.

[13] A. Schulz et al. Deepview: Visualizing classification boundaries of deep neural networks
as scatter plots using discriminative dimensionality reduction. In Proc., IJCAI 2020,
pages 2305–2311. ijcai.org, 2020.

62

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2. 
Available from http://www.i6doc.com/en/.  

https://github.com/cairo-thws/fed_streaming

	PapersAndBack
	AllPapers
	Wednesday
	ES2024-9-2






