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Abstract. Electroencephalography (EEG) based brain-computer inter-
faces (BCIs) face great challenges in generalizing across different domains
(i.e., sessions and subjects) without costly supervised calibration. To avoid
supervised calibration, transfer learning, particularly unsupervised domain
adaptation, has been a popular approach. In this work, we focus on a geo-
metric deep learning framework previously proposed for EEG-based men-
tal imagery BCIs. The framework aligns marginal feature distributions in
latent space, assuming identical label distributions across domains. Here,
we propose a novel approach integrating data augmentation and clustering
techniques to align the latent distributions under label shifts.

1 Introduction

A brain-computer interface (BCI) enables direct communication between the
brain and external devices, offering great potential for rehabilitation and com-
munication [1]. Despite their capabilities, electroencephalography (EEG) based
BCIs currently suffer from low signal-to-noise ratio, insufficient specificity, and
domain shifts (e.g., changes in the data distribution).

Domain shifts have been traditionally mitigated by collecting labeled cali-
bration data and training domain-specific models [1]. However, this approach is
resource-intensive and time-consuming. As an alternative, unsupervised domain
adaptation (UDA) learns a model from labeled source domains that performs ef-
fectively on different (but related) unlabeled target domains [1]. Within the BCI
field, UDA primarily addresses inter-session and inter-subject transfer learning
(TL) problems [2], aiming to achieve robust generalization across domains (i.e.,
sessions and subjects) without supervised calibration.

In our previous work, we developed a geometric deep learning framework, de-
noted TSMNet [3], to perform statistical alignment on the symmetric, positive
definite (SPD) manifold. TSMNet jointly learns a convolutional feature extrac-
tor and tangent space mapping (TSM) on the SPD manifold equipped with the
affine invariant Riemannian metric that is well-suited for EEG data due to its in-
herent invariance to linear mixing of latent sources [4]. Many UDA frameworks,
including TSMNet, align the marginal feature distributions, implicitly assuming
identical label distributions across domains. However, label shifts are frequently
encountered in practice, and marginal feature alignment under label shifts can
increase the generalization error [5]. Recent approaches frame this alignment
problem as an imbalanced multi-source and multi-target UDA problem [6].

This paper introduces an extension to TSMNet, enhancing its capability
to simultaneously address feature and label shifts. To maintain the TSMNet
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training scheme and online extendability, we limit our approach to a source-
free unsupervised domain adaptation (SFUDA) problem, where the pre-trained
source model is available instead of raw training data.

2 Preliminaries

Imbalanced multi-source multi-target UDA. Let x denote the input data, y
the corresponding output labels, psi the i-th source domain probability distribu-
tions, and qtj the j-th target domain probability distributions. We assume that
all the psi(x) can be different from each other and different from qtj (x). In the
multi-source, multi-target unsupervised domain adaptation scenario, we assume
that all the psi(y) are equal to each other but different from qtj (y) (Figure 1a).
We additionally assume that the distribution shifts in psi and qtj are dominated
by translations on the covariance matrices. Given N source domains {Dsi}

N
i=1

and M target domains {Dtj}
M
j=1, each source domain Dsi = {(xsi , ysi)}

lsi
i=1 with

lsi labeled examples, and each target domain Dtj = {(xtj )}
ltj
j=1 with ltj unla-

beled examples. The goal is to transfer the knowledge learned from Ds to Dt and

learn a target prediction function ht : xt → yt with only target data {(xtj )}
ltj
j=1

and the source prediction function hs : xs → ys.
Riemannian geometry and TSMNet. The smooth manifold of real D ×D

SPD matrices S+
D = {Z ∈ R

D×D : ZT = Z,Z ≻ 0} together with an in-
ner product on the tangent space TZS

+
D at each point Z forms a Riemannian

manifold. Here, we use the affine invariant Riemannian metric as the inner
product. Tangent spaces have Euclidean structure with easy-to-compute dis-
tances, which locally approximate Riemannian distances on S+

D . For a set of
SPD points Z = {Zj ∈ S+

D}j≤n, the Fréchet mean is defined as the SPD point
that minimizes the average squared Riemannian distances.

Typical TSM models use a feature extractor fθ to map preprocessed EEG
epochs into points Z ∈ S+

D , then use a tangent space mapping function mφ

to project Z to the tangent space at the Fréchet mean GZ and use parallel
transport so that the Fréchet mean becomes the identity matrix. The mapping
function mφ yields output in the Euclidean space, so any standard classifier
gψ can be used. TSMNet extends typical TSM models by learning the pa-
rameters Θ = {θ, φ, ψ} in an end-to-end fashion (Figure 1b). Additionally, mφ

serves as a domain-specific tangent space mapping function, which keeps multiple
parallel domain-specific batch normalization layers to compute domain-specific
Fréchet means and variances during training. These learnable statistics are
substituted with target domain statistics during testing, thus aligning marginal
feature distributions using domain-specific Fréchet means and variances, trans-
forming domain-specific inputs into domain-invariant outputs.

TSMNet benefits from the advantage of latent representation space align-
ment where classes are more linearly separable. Nonetheless, while beneficial for
accuracy, the increased linear separability of classes also renders the alignment
more susceptible to the effects of label shifts [7].
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a b

Figure 1: a, Imbalanced UDA. b, Overview of TSMNet model architecture.

3 Methods

Theoretical motivation. According to [5], denote h ∈ H as the hypothesis, the
target error ǫt(h) cannot be effectively minimized by merely aligning marginal
feature distributions and minimizing the source error ǫs(h). Denote dJS as the
Jensen-Shannon divergence between two distributions, [5] proposes:

ǫs(h) + ǫt(h) ≥
1

2
(dJS(p(y), q(y))− dJS(p(x), q(x)))

2

Generally, if label shifts dJS(p(y), q(y)) are significant, minimizing the divergence
between the feature distributions dJS(p(x), q(x)) and the source task error ǫs(h)
will enlarge the target task error ǫt(h). Considering the SFUDA scenario which
we only have access to pre-trained models, we address label shifts by dividing
our methods into source domain training and target domain alignment.
Data augmentation for source domain training. A mini-batch balanced
(MB) sampler is commonly used to compensate for label shifts in deep learning
[6]. It over-samples minority classes and ensures that the training data are
balanced within each mini-batch. Although over-sampling is effective, it can
lead to over-fitting the minority classes. To mitigate this issue, we propose a
data augmentation method called mix-up mini-batch balance (MUMB). MUMB
reduces direct over-sampling by sampling linear mix-ups of domain-specific and
label-specific samples to get balanced mini-batches. Additionally, we use the
LDAM loss [8], which has been introduced to increase the margin of the minority
classes as a label-dependent regularization technique.
Clustering for target domain alignment. The lack of label information
in the target domain prevents the direct application of techniques used in the
source domain. Since we assume that our distribution shifts are primarily driven
by translations on S+

D , our trained classifier will likely be biased for the target
domain after aligning the marginal feature distributions. Assuming that the
target domain latent data are clustered according to the considered classes, some
labels will likely be mapped to the correct side of the classifier. To exploit this,
we propose to use the initial labels to estimate class-specific means and refine
them with k-means clustering (align pseudo labels). The refined means are used
to estimate a balanced Fréchet mean (Figure 2). This balanced Fréchet mean is
then used inside mφ to align the target domain distribution.
Clustering initial centroids. Initial centroids are crucial in clustering because
they influence the quality of the resulting clusters. Following [9], we derived ini-
tial centroids from predicted labels (i.e., employ the original TSMNet to obtain
predicted labels and calculate the class-specific Fréchet means to establish ini-
tial centroids). For the inter-session TL problem, we propose to use class-specific
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Figure 2: Clustering for target domain alignment.

source domain Fréchet means as the initial centroids because the expected dis-
tribution shifts across sessions are typically small. We note that this approach
is not suitable for the inter-subject TL problem because differences in brain
structures and variations in the performed task additionally drive the shifts.

4 Experiments

In this proof-of-concept experiment with simulations and mental imagery BCI
data, we used balanced datasets and artificially introduced label shifts. Specifi-
cally, all source domains shared a label distribution inverse to all target domains.
We quantified the imbalanced ratio as the ratio of the minority to majority class
counts, with other classes slowly exponentially increasing from this base minority
class ratio. To ensure a fair comparison across different ratios, we standardized
the sample size and gradient steps within each dataset. For the training pro-
cess, we evaluated the original TSMNet, a mini-batch balanced (MB) sampler
with the LDAM loss (MB+LDAM), and our proposed method with the LDAM
loss (MUMB+LDAM). For target alignment, we evaluated the original TSMNet
marginal feature alignment (MFA) [3] and K-means with initial centroids based
on predicted labels (Kmean-P) or source domain means (Kmean-S). We imple-
mented a cross-validation scheme that either leaves one session (inter-session TL)
or one subject (inter-subject TL) as a test set, used balanced accuracy as the
performance metric, and maintained the original TSMNet hyperparameters and
architecture. To reduce random effects, we averaged results over 20 repetitions.
a b

Figure 3: Simulations. a, generated SPD data (imbalance ratio = 0.1) (left), recentered around
the identity matrix (mid), and tangent space mapping (right). These steps are performed by
the original TSMNet with MFA. Results for TSMNet with MFA are colored in blue in b. b,
simulation results. Barplots summarize the grand average balanced accuracy score relative to
the baseline (TSMNet with MFA fitted to a balanced dataset, i.e., imbalance ratio = 1). Error
bars indicate bootstrapped 95% confidence intervals (over groups).

Simulations. We simulated 2D binary classification problems across different
imbalance ratios and created feature shifts between source and target domains
by controlling the separation between class clusters. A total of 20 groups of
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source domains and their corresponding target domains were generated in the
tangent space of the identity matrix using the scikit-learn make classification

function, with each domain consisting of 4000 normally distributed observations.
We first used parallel transport and then used the pyRiemann unupper function
to project the generated data from tangent space onto the SPD manifold so that
each domain Fréchet mean becomes a distinct point on the SPD manifold. An
example is visualized in Figure 3a, where one can see the negative impact of MFA
in the presence of label shifts. Since the generated data (2 × 2 SPD matrices)
reside on the SPD manifold, we skipped the feature extractor fθ in TSMNet.
The results are summarized in Figure 3b. TSMNet is robust to mild label shifts,
maintaining a relatively stable model performance. However, we observed a
significant performance decline as the imbalance ratio intensified, similar to the
findings reported by [7]. This significant performance decline underscores the
detrimental impact of label shifts on the efficacy of marginal feature alignment
methods. The proposed MUMB method provided a remedy to the label shifts,
and the LDAM loss further improved the performance to closely match those of
a balanced dataset (baseline result).

Figure 4: Subject1 from BNCI2015001 PCA visualization of the TSMNet with MFA (left) and
TSMNet+MUMB+LDAM+Kmean-S after alignment (right).

Mental imagery. We evaluated four mental imagery datasets [10] (9 sub-
jects/2 sessions/4 classes/22 channels), [11] (12/2-3/2/13), [12] (4/3/3/14) and
[13] (9/5/2/3). We used MOABB [14] to preprocess the datasets. The prepro-
cessing steps included resampling the EEG signals to 250 or 256 Hz, applying
temporal filters to filter EEG within the 4 to 36 Hz frequency range, and ex-
tracting 3-second segments associated with specific class labels. We investigated
the performance of each method under a certain imbalance ratio of 0.2. The
results are summarized in Table 1, distinguishing between inter-session TL and
inter-subject TL. PCA visualizations suggest that our proposed method approx-
imately aligned class-conditional distributions (Figure 4). As expected, class-
specific source domain Fréchet mean initialization (Kmean-S) is ineffective for
inter-subject TL, yet it achieved the best performance in inter-session TL. In
both scenarios, we observed a large variance in the accuracy among subjects
and a significantly higher performance score alongside a systematic increase in
both the t-value and score.

5 Conclusion and Discussion

We proposed a novel approach combining data augmentation and clustering tech-
niques to align feature distributions under label shifts for TSMNet and other
explicit marginal feature alignment methods on the SPD manifold. Our simu-
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Training Alignment Inter-session Inter-subject

Score ↑ t p Score ↑ t p

Baseline Kmean-P 1.1±11.7 2.5 0.016 -0.7±10.0 -0.7 0.475

Baseline Kmean-S 2.3±12.5 4.7 <0.001 -1.7±11.8 -1.1 0.276

MB+LDAM MFA 6.9±11.5 10.4 ≪0.001 7.6±12.3 6.1 ≪0.001

MB+LDAM Kmean-P 8.0±13.0 10.5 ≪0.001 7.9±13.5 5.7 ≪0.001

MB+LDAM Kmean-S 8.2±13.2 10.4 ≪0.001 2.0±14.8 0.9 0.342

MUMB+LDAM MFA 8.9±11.6 13.1 ≪0.001 8.3±12.9 7.0 ≪0.001

MUMB+LDAM Kmean-P 9.7±13.0 13.0 ≪0.001 8.7±14.2 6.2 ≪0.001

MUMB+LDAM Kmean-S 9.9±12.9 13.2 ≪0.001 3.0±15.4 1.4 0.162

Table 1: Mental imagery results (4 datasets, artificially introduced imbalance ratio 0.2). The
reported score summarizes balanced accuracy (mean±std, 20 repetitions, std over subjects) rel-
ative to baseline (i.e., the original TSMNet with MFA). Paired t-tests with degrees of freedom
33 were computed to identify significant differences between the baseline and other methods.
P-values were corrected for multiple comparisons (8 tests, false discovery rate correction).

lation results underscore the importance of addressing label shifts in marginal
feature alignment methods. We observed a systematic performance increase in
the considered mental imagery EEG datasets. Altogether, the proposed methods
extend the TSMNet framework to learning scenarios with label shifts, laying the
groundwork for future applications with inherent label shifts (e.g., sleep staging).
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