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Abstract. In this paper, we investigate offline reinforcement learning
(RL) with the goal of training a single robust policy that generalizes ef-
fectively across environments with unseen dynamics. We propose a novel
approach, Trajectory Encoding Augmentation (TEA), which extends the
state space by integrating latent representations of environmental dynam-
ics obtained from sequence encoders, such as autoencoders. Our findings
show that incorporating these encodings with TEA improves the trans-
ferability of a single policy to novel environments with new dynamics,
surpassing methods that rely solely on unmodified states. These results
indicate that TEA captures critical, environment-specific characteristics,
enabling RL agents to generalize effectively across dynamic conditions.

1 Introduction & Related Work

Reinforcement Learning (RL) has seen notable success in addressing complex
decision-making tasks across different fields. One ongoing challenge is to enable
RL agents to generalize effectively when exposed to environments with varying
dynamics, especially when the training needs to happen offline. This issue limits
RL’s practical applications in real-world situations, where conditions may change
unexpectedly. While transfer learning in RL usually seeks to tackle this issue by
leveraging online data in both source and target environments, an open challenge
remains: developing policies to new, unseen dynamics through adjusted offline
training, purely with data from the source environments.

Some methods involve training agents across environments with varying dy-
namics to foster robustness and adaptability. Domain randomization [1] intro-
duces environmental variations during training to improve robustness, facilitat-
ing transfer from simulation to reality. Information bottlenecks [2] can also be
used for dynamics generalization by enabling agents to capture only the task-
relevant information while ignoring irrelevant environmental variations.

Meta-reinforcement learning (Meta-RL) algorithms, such as Probabilistic
Embeddings for Actor-Critic Reinforcement Learning (PEARL) [3] and Varia-
tional Bayes-Adaptive Deep RL (VariBAD) [4], learn latent task representations
to facilitate rapid adaptation to new tasks through online interactions. A Gaus-
sian Process-based approach has been proposed to transfer knowledge across
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systems with slight variations by modeling correlations between members, fo-
cusing on multi-task settings [5]. In contrast, our method employs sequence
encoders to capture latent dynamics, ensuring generalization in offline reinforce-
ment learning without requiring task-specific identifiers.

Sequence encoders, like autoencoders and recurrent neural networks, have
been used to compress sequences into compact representations in RL. For ex-
ample, the world models framework [6] learns latent representations of the en-
vironment to facilitate planning.

In offline RL, where learning is confined to static datasets, algorithms like
Batch-Constrained Q-learning (BCQ) [7, 8] and Learning in Interactive Offline
eNvironments (LION) [9] address challenges such as value function overestima-
tion and out-of-distribution actions. However, these techniques do not directly
tackle the transferability of policies to new environments with unobserved dy-
namics.

In this study, we investigate an offline method in RL to enhance robust-
ness and generalization, concentrating on the classic cart-pole environment with
variations in pole lengths and cart masses. We introduce a sequence encoder
to capture latent representations of environment dynamics from state-action se-
quences. By adding these latent encodings to the state space, we aim to improve
the agent’s adaptability to different environments. Our work provides three main
contributions:

1. We introduce the use of sequence encoders, particularly autoencoders, to
derive meaningful representations of environment dynamics from state-
action sequences.

2. We demonstrate that adding these encodings to the state space enhances
the transferability of policies to environments with new dynamics.

3. We compare our approach to a baseline method and demonstrate that our
method enables a single policy to maintain strong performance across new
environments after being trained solely on the source environments.

2 Experimental Setup

Fig. 1: Illustration of cart-poles with varying pole lengths and cart masses.

Environment Design: We use the classic CartPole-v1 environment [10] as our
testbed, introducing variability in dynamics by modifying its transition-defining
parameters. Five source environments were created by altering pole length and
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cart mass, with values drawn uniformly from the ranges [0.1, 2.0] and [0.5, 2.0],
respectively. These parameters are set for each environment as follows:

env properties =

{
pole length : li ∼ U(0.1, 2.0),

cart mass : mi ∼ U(0.5, 2.0)

}
. (1)

The goal is to train a single policy using data from the source environ-
ments that can generalize to new environments without additional training. Our
method is designed to achieve robust generalization through offline training on
the source environments. Figure 2 displays the variability in pole length and cart
mass across source environments and highlights the individual new environments
N1 to N10 used for evaluation.

Fig. 2: Scatter plot showing
pole length and cart mass for
source environments (blue) and
new environments (red).

Sequence Encoder: To capture the dynamics of each environment, we
introduce the notion of a sequence encoder. For this, we used autoencoders
(AE), however other architectures, like LSTMs or even MLPs are conceivable.
The AE is trained to reconstruct sequences of state-action pairs, compressing
the sequence into a latent representation. The latent encoding is derived from
the bottleneck layer of the AE.

Our experiments indicated that the AE with a four-dimensional latent space
produced the best performance, so we focus our analysis on this configuration.

Data Collection: We initially train a Deep Q-Network (DQN) [11] on the
standard CartPole-v1 environment, using an implementation from the authors
of the BCQ algorithm [7]. This trained agent is then deployed on a number of
source environments with randomly sampled dynamics, as visualized in Figure 2.

We collect interaction data from this agent, storing transitions in a regular
replay buffer. For the autoencoder training, we use sequences of state-action
pairs of length 16 (comprising 16 states and 15 actions in between), generated
by the DQN agent trained on the regular cart-pole environment.
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Sequence Encoder Training: The AE is trained to reconstruct input
sequences, compressing each sequence into a four-dimensional latent space. The
training objective is to minimize the mean squared error between input and
reconstructed sequences.

State Space Augmentation: After training the encoder, the state space
of each source environment is augmented. For each source environment in our
system that we used for training, five trajectories of length 16 are taken from
the buffer and encoded. The average latent encoding is then computed, creating
a four-dimensional vector that reflects the dynamics of each environment.

This encoding is appended to the original states, expanding the state space.
To avoid additional data collection from the source environments, we retroac-
tively extend states in the existing dataset by appending the relevant encodings.

Offline RL Training with BCQ: We employ the BCQ algorithm in its
discrete form to train policies exclusively using pre-collected datasets from the
source environments, without any additional interactions with the environments
during training. We conduct the following experiments:

1. Baseline: BCQ trained on the data from the source environments without
augmented states.

2. Trajectory Encoding Augmentation (TEA): BCQ trained on the
data from the source environments with augmented states using learned
encodings of trajectories.

Evaluation Protocol: To assess policy transferability, we measure each
policy’s performance on new environment(s) which were randomly sampled from
the same distribution as the source environments and are visualized in Figure 2,
reporting average returns as well as standard error over 100 random seeds after
20,000 timesteps of training. Note that five sequences of length 16 were needed to
be seen from these new environments to facilitate the creation of a first encoding.

3 Discussion

Results: The performance of each experiment on the new environment(s) after
20,000 timesteps of training on the source environments is shown in Table 1. In
Figure 3 we see the performance of trajectory encoding augmentation (TEA)
divided by the baseline performance for each new environment.
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Environment Baseline TEA
N1 36.2 ± 2.2 72.1 ± 6.6
N2 38.4 ± 0.2 45.3 ± 2.2
N3 43.3 ± 1.1 50.1 ± 2.9
N4 49.8 ± 0.7 55.7 ± 2.3
N5 36.3 ± 2.2 72.5 ± 6.7
N6 35.1 ± 0.6 35.2 ± 1.5
N7 47.3 ± 0.8 47.7 ± 1.7
N8 101.5 ± 1.4 145.5 ± 7.4
N9 58.9 ± 1.9 60.7 ± 2.5
N10 40.3 ± 0.9 52.6 ± 13.7
Average 48.7 ± 0.4 63.7 ± 1.9

Table 1: Performance Across N1 to N10 (mean ± SEM over 100 seeds)

Fig. 3: Plot illustrating the per-
formance improvement achieved
through TEA across various
new environments, compared to
the baseline performance. No-
tably, all performance ratios ex-
ceed 1, demonstrating consis-
tent gains.

Analysis: The results in Table 1 demonstrate a statistically significant im-
provement in performance for the TEA method over the baseline condition, as
indicated by the uncertainties accompanying the average values. These find-
ings show that augmenting the state space with latent encodings, derived from
a sequence encoder, enables the trained policy to generalize more effectively
across environments with new dynamics. The observed results confirm that the
approach based on latent encodings leads to better outcomes under changing
dynamics, suggesting that this form of augmentation enhances policy transfer-
ability compared to the baseline.

4 Conclusion

In this paper, we addressed the problem of enabling quick adaptation to new
environments with different dynamics using offline pretraining from source en-
vironments. Our proposed Trajectory Encoding Augmentation (TEA) method
demonstrates that using sequence encoders to augment the state space in offline
RL can notably improve policy transferability to respective new environments.
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By utilizing latent representations of environment-trajectories, agents perform
well in new environments.

This technique offers a promising path toward developing RL agents more
resilient to changing environmental dynamics.

Future Work: Our method can be expanded to explore the offline-to-online
learning paradigm. Specifically, we plan to initiate training using BCQ and sub-
sequently continue with regular Q-learning. This extension would enable us to
examine the agent’s adaptability during the shift from offline to online learn-
ing, yielding deeper insights into the effectiveness of our approach and offering
a more comprehensive perspective on its application in dynamic environments.
In addition, exploring environments with higher-dimensional state-action spaces
and experimenting with alternative encoder architectures could further validate
and enhance the versatility of our approach.
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