
A variational framework for local learning with
probabilistic latent representations

Cabrel Teguemne Fokam1,5, Khaleelulla Khan Nazeer2,
Christian Mayr2,3, Anand Subramoney4 and David Kappel1,5 ∗

1 Institut für Neuroinformatik, Ruhr Universität Bochum, Germany
2 Faculty of Electrical and Computer Engineering, and

3 Centre for Tactile Internet with Human-in-the-Loop (CeTI),
Technische Universität Dresden, Germany

4 Department of Computer Science, Royal Holloway, University of London, UK
5 CITEC, Bielefeld University, Germany

Abstract. We introduce a novel method for distributed learning by
dividing deep neural networks into blocks and incorporating feedback net-
works to propagate target information backwards, enabling auxiliary local
losses. Forward and backward propagation operate in parallel with inde-
pendent weights, addressing locking and weight transport problems. Our
approach is rooted in a statistical view of training, treating block output
activations as parameters of probability distributions to measure alignment
between forward and backward passes. Error backpropagation is then per-
formed locally within blocks, hence block-local learning. Preliminary re-
sults across tasks and architectures showcase state-of-the-art performance,
establishing a principled framework for asynchronous distributed learning.

1 Introduction

The error backpropagation algorithm, that dominates today’s deep learning
methods, requires a sequential alternation of forward and backward phases. This
introduces a locking problem because each phase must wait for the other [1]. Fur-
thermore, the two phases rely on the same weight matrices to compute updates,
which makes it impossible to separate memory spaces, known as the weight
transport problem [2, 3]. Locking and weight transport problems, make efficient
parallelization of machine learning models is extremely difficult, especially for
low-resource settings.

We propose a new method to address these problems, to distribute a glob-
ally defined optimization algorithm across computing devices using only local
updates. Our approach, called block-local learning (BLL), is derived from varia-
tional inference that provides auxiliary local targets through a separate feedback
network that back-propagates information backwards from the targets. Messages
are communicated forward and backward in parallel. Updates use local losses

∗CTF and KKN are funded by BMBF project EVENTS (16ME0733). DK is funded by
the Ministry of Culture and Science of the State of North Rhine-Westphalia under project
SAIL (grant no. NW21-059A) and BMWK project ESCADE (01MN23004D). The authors
gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for
providing computing time on GCS JUWELS at Jülich Supercomputing Centre (JSC).

165

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

Fig. 1: Block-local learning. A deep neural network architecture NA is split into
multiple blocks (forward blocks) and trained on an auxiliary local loss. Targets
for local losses are provided by a feedback network NB .

calculated using the targets provided by the feedback messages. Several models
have been proposed previously that used random feedback weights to provide
local targets, such as feedback alignment [3], target propagation [4] and related
approaches [5]. Some previous methods are also based on probabilistic or energy-
based cost functions, e.g. contrastive learning [6], equilibrium propagation [7]
or forward propagation [8]. Furthermore, [9] have used greedy local, block- or
layer-wise optimization, and achieved good results by combining different local
losses. In contrast to these previous results, BLL optimizes local losses without
requiring a contrastive step where different positive and negative samples are
propagated through the network. Within each block, conventional error back-
propagation is performed locally (”block local”), thus mitigating the locking
problem and solving the weight transport problem. Our method provides a new
principled method for distributing network training across multiple computing
devices and shows promising first results across several benchmark tasks.

2 Probabilistic formulation of block-local learning

The BLL architecture is illustrated in Fig. 1. The neural network NA, that
forward-propagates inputs x in the conventional fashion, is split into N + 1
blocks. Intermediate outputs αk, at each block k are matched against auxiliary
targets βk provided through feedback blocks NB . The feedback blocks only
use the target vector y as input and can therefore be computed in parallel and
independently. Error back-propagation is used locally within each forward block,
i.e. block local learning (BLL). Backward blocks can be updated using convex
optimization on each training batch, adding only a small compute overhead.

To derive BLL we use a probabilistic interpretation of deep learning. The
problem of minimizing any loss function L in a deep neural networks can be
reformulated in terms of maximum likelihood (ML), by defining the probability

166

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

of data samples (x,y) as probability1 p (y |x) ∝ e−L. The equivalent learn-
ing problem is to minimize the negative log-likelihood L = − log p (y |x)
with respect to the network parameters θ [10]. This probabilistic interpreta-
tion of deep learning can be used to define block-local losses and distribute
learning across the network. Splits of the network into blocks k can be in-
terpreted in the ML formalism by introducing latent variables2 zk such that
p (y |x) = E [p (y | zk) p (zk |x)]. At block k, the network outputs the parame-
ters of a probability distribution αk(zk) = p (zk |x) (e.g., means and variances if
αk is Gaussian). The network thus translates αk−1 → αk → . . . by outputting
the statistical parameters of the conditional distribution αk(zk) and taking the
αk−1(zk−1) parameters as input.

More specifically, the network implicitly calculates the following expectation

αk (zk) = p (zk |x) = E [pk (zk | zk−1) αk−1 (zk−1)] = fk (αk−1,θk) , (1)

with state transition probability pk and block-local network parameters θk.
Eq. (1) is an instance of the belief propagation algorithm for the chain of la-
tent variables zk, zk+1, . . . Consequently, the whole network realizes a condi-
tional probability distribution p (y |x) as in the maximum-likelihood formulation
above, where x and y are network inputs and outputs, respectively.

2.1 Distributed variational learning

We construct and use an upper bound F on the log-likelihood loss L for train-
ing the model. F uses the backward network NB to introduce a variational
distribution q. If constructed suitably, the variational upper bound can replace
L with local losses. The variational posterior ρk (zk) can be computed up to
normalization by propagating forward messages αk (zk) and feedback messages
βk (zk) forward and backward through the network. Importantly, αk (zk) and
βk (zk) can have separated parameter spaces, which we denote by θk and ϕk,
respectively. We used a single linear layer to back-propagate β-messages. The
variational posterior is then given by

ρk (zk) = qk (zk |x,y) ∝ p (zk |x) q (y | zk) = αk (zk) βk (zk) . (2)

The variational objective minimizes the ML loss L and the mismatch between
p and q

F = − log p (y |x) + 1

N

N∑
k=1

DKL (qk | pk) ≥ L , (3)

Simple version:

F = L +
1

N

N∑
k=1

DKL (ak |bk) ≥ L , (4)

1Learning the prior p (x) =
∑

y p (x,y) over input samples x is often of lower relevance and

is ignored here for brevity. Therefore, we focus on directly optimizing p (y |x).
2At no point does the network produce samples of the implicit random variables zk, they

are introduced here only to conceptualize the mathematical framework.

167

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

for x,y in the training data set do
α0 ← x
for 1 ≤ k ≤ N do

βk ← gk (y,ϕk) ▷ Feedback

αk ← fk (αk−1,θk) ▷ Forward

ϕk ← argminϕk
ℓk (pk, βk |αk−1)

θk ← θk + η∇θk
ℓk (pk, βk |αk−1)

Fig. 2: Left: Pseudo code of the BLL training algorithm. fk and gk are the
transfer functions of forward and feedback blocks, respectively. The for -loops
can be interleaved and run in parallel. Right: Timeline of execution for BLL.

where pk and qk are true and variational posterior distributions, and the Kullback-
Leibler divergence DKL (p | q) = Ep [log p− log q] measures their mismatch. Con-
veniently, using the Markov property of the network blocks outlined above we
can rewrite this form and identify an upper bound on L, that only consists of
block-local losses ℓk at all network blocks k, and that can be constructed using
the forward and feedback networks NA and NB , given by

ℓk (pk, βk |αk−1) = DKL (qk |αk) + H (pk |αk−1) , (5)

Simple version:

ℓk (ak,bk) ≈ ℓk (ak,bk)DKL (qk |αk) + H (pk |αk−1) , (6)

where the first term measures the mismatch between the variational posterior ρk
and the forward message αk. The second term is the entropy loss of the forward
network H (pk |αk−1) = −E [αk−1(zk−1) log pk (zk | zk−1)].

The loss in Eq. (6) is local in the sense that it is completely determined by
the information available at block k, i.e., the forward message from the previous
block αk−1, and the feedback βk. Furthermore, the loss is local with respect
to learning, i.e. it doesn’t require global signals to be communicated to each
block. In this sense, our approach differs from previous contrastive methods
that need to distinguish between positive and negative samples. Any sample
that passes through a block can be used directly for weight updating, by local
greedy optimization of the losses (6). For linear backward networks, the loss
(6) is convex such that optimal ϕk can be directly computed over a mini-batch,
adding little extra compute for feedback messages. Forward network parameters
θk are optimized by conventional error back-propagation locally and in parallel.

2.2 Variational greedy block-local learning

To derive concrete losses and update rules for the forward and backward net-
works, we assume that αk’s and βk’s are channel-wise independent univariate
Gaussian distributions with known variance. For the Gaussian case considered

168

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

Fashion-MNIST CIFAR-10 CIFAR-100
ResNet-50 ResNet-50 ResNet-50

BP 93.4 ± 0.60 94.8 ± 0.25 77.8 ± 0.21

FA 86.6 ± 0.70 62.5 ± 0.40 -
Pred-Sim 94.2 ± 0.20 92.1 ± 0.20 71.7 ± 0.76
BLL 94.1 ± 0.24 94.6 ± 0.17 77.9 ± 0.10

Table 1: Classification accuracy (% correct) on vision tasks. BP: end-to-end
backpropagation, FA: Feedback Alignment, Sim Loss: Local learning with simi-
larity matching loss [9], BLL: block local learning.

here ρkj ’s are simply ρkj = 1
2 (αkj + βkj), however, the framework outlined

above can easily be generalized to a more complex probability distribution. A
feed-forward DNN NA : x → y, can be split into N + 1 blocks by introducing
implicit latent variables zk : x → zk → y. Blocks can be separated after any
arbitrary layer and we used 4 blocks throughout all experiments.

In summary, the BLL algorithm is shown in Figure 2. The two for -loops can
be interleaved and parallelized by pipelining the propagation of data samples
through the network (see illustration: right). Updates can be computed as soon
as propagation through a given block is complete. There is no locking since only
the data labels y are needed to compute the output of the backward network.
Furthermore, there is no weight transport problem since parameter spaces are
separated and updates are computed only locally.

3 Results

We evaluated the BLL algorithm on three vision tasks: Fashion-Mnist, CIFAR-
10 and CIFAR-100. Its performance is compared for the ResNet50 architecture
with that of Backpropagation (BP), Feedback Alignment [3] (FA) and Local
learning using similarity matching loss, Pred-Sim [9]. The network was divided
into four blocks for BLL and Pred-Sim. The splits were introduced after residual
layers by grouping subsequent layers into blocks. We included the predictive loss
as suggested in [9] as an additional target in our BLL method. Gradient flow
was stopped at block boundaries for all losses.

Block sizes were (12,13,12,13) for ResNet-50. Backward networks for BLL
were constructed as linear layers with label size as input and output size equal to
the number of channels in the corresponding ResNet block output. The kernels
of ResNet-50 used by FA architectures during backpropagation were fixed and
uniformly initialized following the Kaiming initialisation method [11].

The results are summarized in Table 1, showing the mean and standard
deviation over 3 runs for all methods. We do not report results for FA on CIFAR-
100 due to limitations in the current PyTorch implementation. BLL performs on
par or slightly better than Pred-Sim overall for all tasks. FA was outperformed
by BLL, where the gap became wider as the task and model complexity increased
[12]. BLL performs comparably to end-to-end backpropagation for all datasets.

169

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

4 Discussion

This work tackles a key challenge in modern ML: distributing and horizontally
scaling ML models across multiple compute nodes for training models too large
for a single node. This approach enhances efficiency and enables the use of
smaller, energy-efficient devices, such as edge hardware. We propose a proba-
bilistic framework for defining block-local losses in deep architectures, achieving
comparable or slightly better performance than prior methods, and reaching the
performance of standard end-to-end error back-propagation on small-scale and
middle-scale vision tasks. However, performance may degrade with excessive
splits, as local losses may lack sufficient feedback. Our framework's flexibility
allows for multi-layer feedback networks, opening avenues for new block-local
parallel training models in energy-constrained, distributed settings.

References

[1] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves,
David Silver, and Koray Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gra-
dients. arXiv:1608.05343 [cs], August 2016.

[2] Stephen Grossberg. Competitive learning: From interactive activation to adaptive reso-
nance. Cognitive science, 11(1):23–63, 1987.

[3] Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Ran-
dom feedback weights support learning in deep neural networks. arXiv:1411.0247, Novem-
ber 2014.

[4] Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed
random learning signals allow for feedforward training of deep neural networks. Frontiers
in Neuroscience, 15, February 2021.

[5] Arild Nøkland. Direct Feedback Alignment Provides Learning in Deep Neural Networks.
arXiv:1609.01596 [cs, stat], September 2016.

[6] Bernd Illing, Jean Ventura, Guillaume Bellec, and Wulfram Gerstner. Local plasticity
rules can learn deep representations using self-supervised contrastive predictions. In Ad-
vances in Neural Information Processing Systems, volume 34, pages 30365–30379, 2021.

[7] Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between
energy-based models and backpropagation. Frontiers in computational neuroscience,
11:24, 2017.

[8] Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv
preprint arXiv:2212.13345, 2022.

[9] Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals.
In International conference on machine learning, pages 4839–4850. PMLR, 2019.

[10] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature,
521(7553):452–459, 2015.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification, 2015.

[12] Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and
Timothy Lillicrap. Assessing the scalability of biologically-motivated deep learning algo-
rithms and architectures. Advances in neural information processing systems, 31, 2018.

170

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

	AllPapares and back
	AllPapers
	Wednesday
	ES2025-123-2

