
Evolutionary Fault Localization Based on the
Diversity of Suspiciousness Values

Willian de Jesus Ferreira1, Plinio S. Leitao-Junior1,
Deuslirio Silva-Junior1 and Rachel Harrison2

1- Universidade Federal de Goias (UFG) - Instituto de Informatica (INF)
Alameda Palmeiras, Quadra D, Campus Samambaia, Goiania, Goias - Brazil

2- Oxford Brookes - School of Engineering, Computing and Maths
Headington Campus, OX3 0BP, Oxford - United Kingdom

Abstract. Context. Fault localization (FL) is a software lifecycle activity
and its automation is a challenge for researchers and practitioners. Method.
The study focuses on evolutionary fault localization and introduces a novel
Genetic Programming (GP) approach that evolves FL heuristics based
on the diversity of the suspiciousness score of program statements – a
score to grade how faulty a statement is. Experimental analysis. The
approach was evaluated against baselines, which include the canonical GP,
in benchmarks with real programs and real faults. Conclusion. The results
showed the competitiveness of the approach through evaluation metrics
commonly used in the research field.

1 Introduction

Software is subject to the presence of faults (defects), which impact its qual-
ity, production and maintenance costs. Fixing faults requires knowledge about
which program statements are likely to be defective. An important source of
information about faults is the testing activity, where data (test spectra) can be
collected from test case execution.

Test spectra refers to the control flow executed by a set of test cases, as well
as the test result (failure or success). A negative test occurs when the program
output obtained by executing a test case is different from what was expected,
otherwise the test is positive. For instance, the spectrum of a test case records
whether the test is positive or negative and distinguishes the statements executed
from the statements not executed by the test case.

Intuitively, if a statement is executed in negative tests, but is not executed
in positive tests, then such a statement has a greater chance of being faulty
(defective) in relation to statements that are executed only in positive tests.

Spectrum-based Fault Localization (SFL) uses the test spectra to automat-
ically compute a score (suspiciousness value) that ranks how faulty each state-
ment is [1]. In fact, an FL heuristic is an equation (formula) to derive such a
score for each program statement. The idea is to have an ordering of statements
based on their score, in order to guide the tester in locating faults.

Evolutionary fault localization is a research field of SFL that uses the test
spectra to automatically generate FL heuristics [2]. In this context, Genetic

473

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

Programming (GP) [3] has been applied on the evolution of FL solutions, mainly
by deriving competitive heuristics for the software under test [4], [5].

Our investigation focuses on the diversity of scores that rank program el-
ements. If two or more statements have the same suspiciousness value as the
faulty one, then it is not possible to precisely determine which of them is the
faulty statement. Therefore, the uniqueness of suspiciousness values potentially
impact the fault localization effectiveness.

We hypothesize that the uniqueness of suspiciousness values adds value in
guiding the development of heuristics through GP. We suggest that our approach
may enable GP-evolved heuristics to empirically outperform the canonical GP
and other reference baselines. To our knowledge, this is the first time that the
uniqueness of suspiciousness values has been explored as a factor to improve
GP-based solutions for fault localization.

The paper is structured as follows. Sections 2 and 3 introduces the test
spectra and the proposed approach, respectively; the experiments are described
in Section 4; Section 5 presents the results of their analysis; and Section 6
concludes and shows future work.

2 Test Spectra and Suspiciousness Values

For simplicity, the behavior of a statement when executing a set of test cases
is summarized in four spectrum variables: es and ns represent the number of
positive tests that execute and do not execute the statement, respectively; ef
and nf represent the number of negative tests that execute and do not execute
the statement, respectively.

A spectrum entry (SE) is a quadruple - [ef, es, nf, ns] - that represents
the values of spectrum variables, concerning a particular program statement. An
FL heuristic calculates a suspiciousness value based on the spectrum variables.
As a consequence, if two or more statements have the same spectrum entry (e.g.
control flow dependence), they will have identical suspiciousness values.

The uniqueness of test spectrum entries (uSE) refers to the number
of distinct [ef, es, nf, ns] quadruples related to all program elements. The
uniqueness of a suspiciousness value (uSV) refers to the number of distinct
suspiciousness values related to all program elements. Note uSV ≤ uSE and
higher uSV means higher diversity of suspiciousness values.

Finally, the uSV ratio, calculated as uSV/uSE, refers to how unique sus-
piciousness values are with respect to the number of distinct spectrum entries.
The ratio ranges from 0.00 to 1.00, and higher values means better diversity of
suspiciousness values.

3 Approach

Our approach involves adding the uniqueness suspicion value (uSV) to the GP
metaheuristic learning process. This addition aims to guide the training of fault

474

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

localization methods, promote individuals with higher uSV , and improve the
performance of GP-evolved heuristics in fault localization.

Basically, we use an evolutionary strategy in which individuals (solutions)
with smaller fitness function are privileged for the genetic operators (crossover,
mutation and selection).

On incorporating the uSV effect to the fitness function, we use a common
measure (e.g. number of program elements up to first fault location) but divided
by (uSV ∗w) where w ∈ {1, 3, 5, 7}. After preliminary analysis, we observed that
w equals 3 produced results that were identified as most promising. Then we
have proposed one model aiming to assess our approach: GP/(uSV ∗ 3), the
canonical GP fitness function is divided by three times uSV .

4 Experimental Design

To address the evaluation of the proposal, we set out a research question: Does
the uniqueness of suspicion values guide the generation of effective and compet-
itive evolutionary approaches for fault localization?

Regarding the benchmark, we choose Defects4J, proposed by [6], a set of
Java programs that represent real failures in real programs and that has been
explored in the research field.

The baselines includes human-made FL heuristics, such as Tarantula [7] e
Ochiai [8], and heuristics evolved by evolutionary approaches such as the canon-
ical GP [2] [9]. Table 1 analyzes the benchmark and shows for each program the
average of: the number of statements, the spectrum entries uniqueness (uSE),
and the suspiciousness values uniqueness (uSV) for the baseline approaches as
well as the proposal. Since there are several faulty versions per program, so the
arithmetic mean was calculated. Note GP derives better diversity of suspicious-
ness values than the others.

Table 1: Test spectrum analysis - Defects4J Programs

uSV
Program Statements uSE Tarantula Ochiai GP
Chart 4167,92 70,38 32,58 34,79 57,24
Math 2266,11 38,74 15,85 16,22 21,42
Lang 832,55 23,62 8,93 9,27 15,31
Time 5078,5 371,85 156,92 157,62 295,02
Mockito 1820,54 205,86 89,30 89,97 203,23

To assess the proposed approach, we use two evaluation metrics: Exam,
the proportion of investigated statements, in relation to the number of program
elements, until finding a fault; and Wasted Effort(wef@n), the number of
statements investigated until locating a fault, but considering only n first posi-
tions of the suspiciousness ranking. In both metrics, lower values are better.

All experiments were conducted on Debian GNU/Linux version 10. The
GP implementation was done using the DEAP1 (Distributed Evolutionary Al-

1http://deap.readthedocs.io

475

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

gorithms in Python) framework version 1.3.1, and the algorithms were executed
with Python2 version 3.7.3. This setup provided the necessary environment for
running the experiments and ensuring consistent results throughout the tests.

In terms of GP parameters, we explored various configurations to balance the
trade-off between fault localization effectiveness and the cost of training. The fi-
nal settings were as follows: a population size of 100 individuals, each initialized
randomly with tree structures having a minimum height of 4 and a maximum
of 8. A tournament selection operator with a size of 3 was used, alongside a
crossover operator with a rate of 0.8, a subtree replacement mutation operator
with a rate of 0.07, and a point mutation operator with a rate of 0.03. The stop-
ping criterion was set at 50 generations. For tie-breaking suspiciousness values,
we applied a worst-case strategy, assigning all tied elements to the worst tied
position. Additionally, to address overfitting, we used 10-fold cross-validation
and repeated the experiments 10 times to minimize the stochastic effects.

5 Results

Figure 1 uses Time, Chart and Lang programs to plot the uSV ratio for the three
baselines as well as for the approach. It shows that the heuristics based on the
canonical GP improved the value of the uSV ratio over Tarantula and Ochiai.
In turn, our approach outperformed all baselines, as it reached the maximum
value of the uSV ratio (i.e. 1.0), which GP/(uSV ∗ 3) distinguishes all entries
in the test spectrum with respect to their suspiciousness values.

Fig. 1: uTSE ratio - Time, Chart and Lang programs.

The Figure 2 shows the results of the Exam metric for all approaches. Our
approach achieved better effectiveness in relation to all baselines. Regarding our
research question, based on all findings we conclude that the maximum value
(or approximation) of the uSV ratio enables the fault localization heuristics to
have superior effectiveness.

2http://python.org

476

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

Fig. 2: Exam - Time, Chart and Lang programs.

In order to deal with the stochastic effect that is inherent in the evolutionary
approaches as well as to raise the findings’ reliability, two statistical tests were
applied: the Wilcoxon pair comparison test and the Vargha & Delaney Â12 test,
as recommended by Arcuri and Briand [10]. We applied both tests to the
results from the evaluation metrics used in the experiment: Exam and Wasted
Effort (wef@n). Please see Tables 2 and 3.

The Wilcoxon test shows that the training approach present results for
both evaluation metrics with equivalent significance to the baseline (GP meta-
heuristic). This finding reveals the competitiveness of the approach.

Table 2: Statistical Analysis
Exam - Varga e Delaney Â12

Program Tarantula Ochiai GP
Chart 0.47 0.51 0.48
Lang 0.49 0.50 0.51
Math 0.52 0.52 0.51
Mockito 0.59 0.61 0.57
Time 0.52 0.52 0.55

Table 3: Statistical Analysis
Wef@n - Varga e Delaney Â12

Program wef@5 wef@10
Chart 0.50 0.50
Lang 0.50 0.53
Math 0.52 0.52
Mockito 0.52 0.53
Time 0.55 0.59

Threats to Validity. Wemitigated threats to internal validity, i.e. reducing
results by chance, by using baselines and evaluation measures used in prior
studies. Experiments were run at least 10 times for each instance (program
version) in order to deal with stochastic variation and 10-fold cross-validation
strategy for generating robust evolutionary GP-evolved heuristics. To deal with
external validity, i.e. whether the results can be generalized, a benchmark used in
many contexts related to software engineering was applied. Finally, to cope with
threats to construct validity, how well the measurements are actually correlated
to what they claim to do, measures are used that are similar to previous studies.

477

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

6 Conclusion

This study introduces an approach for evolutionary fault localization, by using
the diversity of program statements’ suspiciousness values to drive the genera-
tion of heuristics, through the Genetic Programming (GP) metaheuristic. The
research proposes a metric to assess such a diversity, uSV ratio, which measures
how distinct the suspiciousness value of a program statement is from the others.

Regarding the empirical evaluation, the investigation used the Defects4J
benchmark with real defects and real programs, three baselines that include an
evolutionary state of the art (the canonical GP) and evaluation metrics widely
used in the research field, aiming to reduce threats to the findings’ validity.

We conclude that an approximation to the maximum value of the uSV ratio
promotes fault localization effectiveness. It shows the competitiveness of the
proposal and we confirmed statistically that the diversity of suspiciousness scores
produces superior heuristics for fault localization.

In future work, further experiments are needed, including the use of other
benchmarks from the research field and the incorporation of additional data
sources (e.g. data flow and mutation spectra).

References

[1] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on
software fault localization. IEEE Transactions on Software Engineering, 42(8):707–740,
2016.

[2] Shin Yoo. Evolving human competitive spectra-based fault localisation techniques. In
Gordon Fraser and Jerffeson Teixeira de Souza, editors, Search Based Software Engineer-
ing, pages 244–258, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[3] John R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[4] Ya Zou, Hui Li, Dongcheng Li, Man Zhao, and Zizhao Chen. Systematic analysis of
learning-based software fault localization. In 2024 10th International Symposium on
System Security, Safety, and Reliability (ISSSR), pages 478–489, 2024.

[5] Plinio S. Leitao-Junior, Diogo M. Freitas, Silvia R. Vergilio, Celso G. Camilo-Junior, and
Rachel Harrison. Search-based fault localisation: A systematic mapping study. Informa-
tion and Software Technology, 123:106295, 2020.

[6] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database of existing faults
to enable controlled testing studies for java programs. In International Symposium on
Software Testing and Analysis, page 437–440, New York, NY, USA, 2014. ACM.

[7] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula automatic
fault-localization technique. In 20th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’05, pages 273–282, New York, NY, USA, 2005. ACM.

[8] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. An evaluation of similarity
coefficients for software fault localization. In Proceedings of the 12th Pacific Rim Inter-
national Symposium on Dependable Computing, Washington, DC, USA, 2006. IEEE.

[9] Jeongju Sohn and Shin Yoo. Fluccs: using code and change metrics to improve fault
localization. In 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, page 273–283, New York, NY, USA, 2017. ACM.

[10] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering. Softw. Test. Verif. Reliab., 24(3):219–250,
may 2014.

478

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

	AllPapares and back
	AllPapers
	Thursday
	ES2025-124-2

