ESANN 2025 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

Robustness in Protein-Protein Interaction
Networks: A Link Prediction Approach

Alessandro Dipalma, Domenico Tortorella, Alessio Micheli

University of Pisa - Department of Computer Science
Largo B. Pontecorvo 3, 56127 Pisa - Italy

Abstract. Protein-protein interaction networks (PPINs) are indispens-
able in exploring complex biological systems, facilitating advancements in
fields like drug discovery, protein function annotation, and disease mecha-
nism elucidation. So far, predicting the dynamical properties of biochemi-
cal pathways has relied on costly numerical simulations. In this paper,
we propose exploiting the topological information in PPINs to restate
the problem of predicting pathway robustness as a link prediction task.
Our experiments show that the PPIN topology can supply information
on inter-pathway relationships, significantly improving predictions of the
graph-agnostic baseline relying only on protein sequence embeddings.

1 Introduction

Protein-Protein Interaction Networks (PPINs) serve as a foundational frame-
work for understanding cellular processes by mapping the physical, genetic, and
predicted interactions among proteins. Interactomes, i.e. the set of all species-
specific protein interactions, are humongous dynamical systems, driven by in-
ternal and external factors. Due to the incomplete knowledge of biochemical
process underlying interactions, and the computational infeasibility of simulat-
ing the whole interactome, so far detailed study of dynamics has been restricted
to isolated cellular processes, known as biochemical pathways (BPs). In this
context, BPs’ simulations have been extensively utilized to measure the impact
of perturbations on the nominal behavior of the biological process [1, 2]. Mea-
suring Dynamical Properties (DPs) provides insights that can be employed, for
example, to advance knowledge on disease mechanisms and identify drug targets.

Deep learning on graphs has emerged as a powerful approach to address bio-
logical network analysis, thanks to its ability to deal with incomplete knowledge,
and automatically learn a hierarchy of meaningful representations directly from
data, while at the same time considerably offsetting the computational cost of
numerical simulations [3].

In this work, we propose to model concentration robustness estimation as a
learning task on the whole PPI network. Our approach bridges the gap between
dynamic property inference and static network analysis, allowing to explore long
range functional dependencies in PPINs. We show that a Deep Graph Network
(DGN) can efficiently produce accurate predictions for any pair of proteins in the
interactomes with high performances by leveraging the PPI network topology.
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2 Background

BPs represent the intricate series of reactions among molecular species. BPs are
often modeled with formalisms that allow to simulate their dynamical behav-
ior, such as Ordinary Differential Equations (ODEs). Simulations via exact or
stochastic approaches enable the computation of Dynamical properties (DPs)
such as stability, robustness and monotonicity to measure system’s responses
to perturbations. Introduced in [4], a-robustness evaluates whether the steady-
state concentrations of reactants remain within predefined acceptable bounds
under varying input conditions. The measure is particularly useful in analyz-
ing BPs, where perturbations to one molecular species can propagate through
the network and influence downstream interactions. An output species Sqyu¢ is
deemed a-robust if its concentration demonstrates a bounded response to per-
turbations of the concentration of an input species s;;,.

Simulation based methods can provide deep insights, but they suffer from
several limitations. First, accurate ODE modeling of BPs requires extensive
knowledge of kinetic parameters and reactions, which are often unavailable or
incomplete. Second, the computational complexity of simulations scales poorly
with network size. As pointed out in [5], DPs can often be inferred from network
topology alone without requiring explicit simulations. These ideas have seen
further development in [6, 7, 3], where the authors have shown that is possible
to predict DPs from BPs employing DGNs reaching high accuracies representing
the BP as a bipartite graph, leaving out stoichiometric details.

PPI databases provide a static representation of the interactome, focusing
on the presence or absence of interactions without capturing their temporal dy-
namics. However, there is a strong relationship between PPINs and BPs: arcs
in PPINSs represent interactions that are integral to biochemical reactions, such
as protein modifications, complex formation, or signaling cascades. By mapping
the connectivity patterns in PPINs to DPs observed in BPs, researchers can
study how BPs modifications can affect neighboring processes. Current interac-
tomes are or are close to being completed [8], and as most biological networks
they exhibit complex topological features (high clustering coefficient, hierarchi-
cal structure, small-worldness) that should allow to study their dynamics [9]. A
lot of work in predictive tasks in PPINs has focused in the prediction of missing
interaction links, or to compute meaningful protein representations [10, 11}, but
there is an unfilled gap in predictive methodologies to extract insights about
PPIN evolving behaviour and indirect influences between distant proteins.

3 Materials and methods

The robustness is defined over BPs, which involve molecules that can be com-
plexes containing multiple proteins. Therefore, we must first rephrase the prob-
lem of its prediction from BP species to pairs of proteins on the PPIN. Once
transposed in graph form, the robustness prediction problem can be addressed as
a graph learning task, namely predicting whether a pair of input-output proteins
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of the PPIN is robust or not to concentration perturbation.

Robustness from BPs to PPINs We first simulate all the BPs in the Biomodels
(1060) repository [12] up to the steady state, following the methodology of [3].
Input species concentrations are varied sampling 32 points within +20% of the
reference input concentration, for a total of 315K simulations. We consider an
output species sy robust to perturbation on the input species s;, if the variation
of the output species concentration remains within #20% of its reference value.

As BP species can correspond to complexes constituted of multiple pro-
teins, we consider a protein p,,. robust to the perturbation of protein p;, if
and only if all biochemical species sou; containing p,,. are robust to all bio-
chemical species si, containing p;,. We use the biomodel annotations from the
UniPROT database [13] to map BP species to their constituent proteins.

Finally, we construct our training graph collecting all the PPI, independently
from the host organism, from the BioGRID database [14]. We have now obtained
a graph G(V, £) having as set of nodes V = {p,}; the proteins, and as the set of
directed edges & = {(p;,p,)}i; the interactions of the PPIN. We further add as
node features x; € R'?8 the encoding of protein sequences obtained by ProtT5
[15] and compressed with principal component analysis. The robustness between
a input-output pair o(p;,, Poys) 18 thus expressed as a relationship between pairs
of nodes in G, that is as a link prediction task.

Learning robustness with DGNs A plethora of models have been proposed to
perform Deep Learning on graphs [16]. Within the the class of Deep Graph
Networks (DGNs), convolutional architectures are based on a stack of L lay-

ers that learn a hierarchy of node representations hz(-e) € R by aggregating
neighborhood information, progressively relying on larger contexts and discov-
ering longer-range relationships between nodes. For our model, we adopt the
convolutional layers of GraphSAGE [17],

h{Y = ReLU (Wﬁ“ WY 4 S W hg.“)) , (1)

where N is the set of neighbors of node 4, and WE“, Wy) € RFT*H are trainable

parameters. For the first layer £ = 1, the input representations hgo) are the
sequential embeddings x; of the protein p,. The final layer’s representations are
used to predict the robustness between pairs of proteins via the readout

o(pirpy) = o (Win b + Woue b)) 2)

whose parameters are trained end-to-end with the convolutional layers by mini-
mizing the binary cross-entropy loss.

4 Experiments and discussion

The graph G accounts for 60K nodes and 2M edges, with average node degree
67. As all PPIs have been collected independently from the host organism, the
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Input data Metric (%)
Model | Emb. Graph Direct. AUROC ACC F1
Null - - - 50.00 57.34 0.00
MLP v X - 90.28+0.25  82.6940.11  79.36+0.26
DGN X v X 81.91+£1.27  73.36£1.04  68.25+0.72
DGN X v v 82.63+0.39  74.4940.51  69.19+0.84
DGN v v X 93.584+0.29 87.44+0.25 84.86+0.34
DGN v v v 93.66+0.27 87.32+0.38  84.70+0.25

Table 1: Final classification scores, mean and deviation over 3 different weights
initializations. Null is a model that always predicts the majority class. Bold
and underline hihglight the best and second bestperformance for each metric.

graph is constituted by 321 connected components, the largest of whom is the
human interactome, presenting average shortest path length 5.6 and diameter
of 9. The 15366 robustness target links are split in training/validation/test
sets with 60:20:20 proportions. The best model hyper-parameters are selected
according to the validation F'1 score.

We consider a multilayer perception (MLP) fed with the concatenation of the
input and output protein sequence embeddings (x;,x;) as a baseline model that
does not take into account graph structure in making robustness predictions. On
the DGN model, we further perform an ablation study to assess the importance
of protein sequence embeddings and of interaction directionality in the PPI net-
work, by considering variants of the input graph without node features and with
undirected edges. For all models, we search the best architecture varying the
number of hidden or convolutional layers L € {1, ...,8}, and the number of units
per layer between 128 and 512; training is halted with early stopping with a
patience of 200 epochs. Following [17], neighbor sampling is performed during
training, sampling 50 neighbors for each node, which is slightly less than the
average degree.

In Tab. 1 we report the results of our experiments, including AUROC and
accuracy, with average and standard deviation over 3 different random seeds
for weights initialization. Overall, the results show that we can predict robust-
ness with high score for all the considered metrics. The best performances are
achieved using the most complete information set available, i.e. graph structure
(PPIN) with protein sequence embeddings. No statistically significant differ-
ence is observed by removing the interaction direction, an outcome that can
be related to the fact that nodes are tightly connected, so that information
propagation is not affected to a great degree. We must consider also that edge
direction in PPINs often depends more on the experimental setting than the
real interaction [14]. The high performance of the MLP baseline (80% F1)
shows that the sequence embeddings have a good correlation with the robust-
ness label, even though they are significantly worse than the DGN results (—5%
F1). This aspect suggests the importance of having useful protein representa-
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tions, even task-agnostic ones. One of the most interesting results is that the
robustness property can be learned by DGN even without any information about
the protein sequences. Without input embeddings, the DGN is forced to learn
from exclusively from PPIN topology; we have observed in our experiments that
performances consistently increase with layers L up to the network diameter.
Furthermore, in this case the DGN seems to take more advantage of edge di-
rectionality (+1% F1), as it does not have information shortcuts provided by
protein sequence embeddings. Even though performances are significantly lower
(—8% F1) than the MLP baseline with embeddings, we can safely state that
PPINs carry important dynamical information about underlying BPs.

As a final remark, we stress that the inference time of DGN is 100 ms, a 2 to
3 orders of magnitude speed-up compared to computing robustness via BP sim-
ulations, which on average require 46 seconds for each of the 315K simulations.

5 Conclusion and future directions

In this preliminary work, we have demonstrated the potential of addressing the
prediction of dynamical properties in biological pathways via Deep Learning on
graphs. Our experiments have confirmed that combining the information on
protein sequences with the relationships between protein pairs of the protein-
protein interaction network allows Deep Graph Networks to learn the robustness
dynamical property as a link prediction task. The ablation study has further
demonstrated the advantage of leveraging both protein structural information
and PPIN topological information. When compared from the point of view of
computational efficiency, our approach is 450x faster than biological pathways
simulations, unleashing the potential of unexploited dynamical information rich-
ness available in large scale biological networks. In future works, we will explore
information from protein folding in addition to protein sequences, and more ad-
vanced DGN model architectures that have exhibited similar performances in
preliminary experiments, to refine predictions also over species-specific PPINs
and to broaden the range of target dynamical properties, offering a valid instru-
ment to increase our understanding of complex biological systems.
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