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Abstract. The increasing demand for data in machine learning raises
significant privacy concerns. Federated Learning (FL) enables multiple en-
tities to train models collaboratively without sharing raw data. However,
centralized FL (CFL) relies on a central server, making it vulnerable to
poisoning attacks and single points of failure (SPOF). Decentralized FL
(DFL) addresses these issues by removing the central server. This paper
proposes a novel DFL architecture integrating blockchain for resisting at-
tacks and Multi-Party Computation (MPC) for secure model parameter
transfer. This architecture enhances security and confidentiality in collab-
orative learning without compromising result quality.

1 Introduction

Federated Learning (FL) [1] addresses privacy concerns by enabling multiple
devices to train models locally, with models aggregated into a global model using
algorithms like FedAvg [2]. This decentralized approach mitigates the privacy
risks associated with centralized model training.

The most common FL architecture is centralized federated learning (CFL),
where local model parameters (e.g., weights or gradients) are sent to a central
server for aggregation. However, CFL relies on a single point of failure and is
vulnerable to attacks. Decentralized Federated Learning (DFL) [3] eliminates
the central server by sharing trained models among clients, who use consensus
mechanisms for aggregation. Some DFL architectures incorporate blockchain
technology to enhance traceability, transparency, and security during aggrega-
tion. Despite these systems’ decentralized nature, it remains possible to infer
sensitive data from local models through inference attacks, thereby threatening
privacy.

We propose an architecture that integratesPrivate Blockchain and Multi-

party Computation (MPC) to eliminate single points of failure, mitigate
poisoning attacks, and further enhance data privacy. This approach achieves
security and data privacy, providing a secure and private federated learning en-
vironment.
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2 Privacy and Security in Federated Learning

Integrating federated learning (FL) with privacy-preserving techniques faces
challenges in data privacy, network security, and attack mitigation. This section
explores FL approaches to enhance privacy, security, and address attack vectors.

2.1 Privacy-Preserving Techniques

Various solutions address data privacy. Differential Privacy (DP) [4] adds noise
to training data or gradients to protect individual privacy, which can reduce
model accuracy. Homomorphic Encryption (HE) [5] allows computations on
encrypted data, though it introduces significant computational overhead, limit-
ing its efficiency in large-scale systems. Additive Secret Sharing MPC [7] splits
data into random shares that sum to the original value, distributing these shares
among parties where no individual share reveals information about the input.
This method enables efficient, secure aggregation of model updates while main-
taining privacy, as reconstruction requires collecting all shares.

2.2 Security and reliability

FL systems often leverage distributed architectures like blockchain to enhance
reliability and security. While public blockchains ensure tamper-proof records
through consensus protocols, their transparency can expose sensitive details.
Private blockchains, offer a more controlled environment, restricting access and
visibility to authorized participants, which can mitigate some privacy concerns.

Existing Blockchain-Based Federated Learning (BFL) solutions address reli-
ability through techniques like committee-based consensus [8], which withstand
malicious participants. However, even private blockchains often store models or
references on the chain, risking sensitive information exposure. Similarly, local
collaboration approaches [9] bypass centralized models but fail to ensure privacy
against adversarial attacks.

2.3 Addressing Privacy and Security Attacks

FL systems face various vulnerabilities that can seriously affect privacy and
security. One significant threat is poisoning attacks [10], where malicious par-
ticipants submit false updates to the model, leading to incorrect predictions or
system failures. Many traditional FL systems also rely on a centralized server
for model aggregation. If this server is compromised, it poses a single point of
failure [11], jeopardizing the entire system’s integrity. Another concern is infer-
ence attacks [12], where attackers may try to deduce sensitive information from
the aggregated model, posing a significant privacy risk without direct access
to the training data. Combining techniques such as MPC with robust security
protocols, including consensus algorithms or Blockchain-based models, is essen-
tial to address these vulnerabilities. These strategies can help establish a more
resilient architecture for federated learning, enhancing its security and privacy
assurances.
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2.4 Combined Privacy and Security Solutions

Several hybrid approaches have tried to address both privacy and security. One
approach combines MPC with a two-server setup, where the servers securely
aggregate model updates. However, this method has its drawbacks: if either of
the servers fails, the entire process collapses, making it a more significant risk
than a traditional SPOF due to the reliance on both servers for system operation
[13]. Another approach also combining MPC (with Replicated Secret Sharing),
blockchain and FL exists, but although it guarantees that the models sent and
received are identical, it doesn’t prevent the model before sending from being
poisoned [6]. Without MPC, there are approaches integrates DP with Proof

of Federation (PoF), which not only strengthens data privacy but also uses
blockchain to verify the integrity of participants within the federated network
[14]. These hybrid models offer promising enhancements to FL systems, but they
must balance the trade-off between model accuracy, efficiency, and security.

3 Proposed framework

The proposed architecture, shown in Figure 1, consists of three actors: Devices,
Clusters, and Nodes. Each device trains a local model using its data and is
linked to a single node. Multiple devices form a cluster, which communicates and
shares information. Nodes aggregate models and maintain the blockchain. FL
is divided into two stages and produces three types of models. Each device first
trains a local model. These local models are aggregated within clusters to form
a cluster model. Finally, the nodes use consensus mechanisms to aggregate
cluster models into a global model shared with all devices for the next iteration.

Fig. 1: Overview of the proposed BFL architecture

3.1 Key Processes

Cluster Generation: Before training, nodes form clusters by randomly group-
ing connected devices. Each cluster must include a minimum number of devices
to ensure MPC. Clusters are regenerated before every new training process to
enhance system robustness.
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Global Model Creation: Initially, nodes propose a first common global
model with random weights. For next iterations, nodes aggregate multiple clus-
ter models to create a new global model. The consensus mechanism validates
these models before adding them to the blockchain. After validation, nodes
distribute the global model to all devices.

Model Training and Aggregation: As illustrated in Figure 2, devices
train their local models using the global model and their data. These local
models are divided into fragments using additive secret sharing MPC, where each
fragment represents a random share that sums to the original model parameters.
These fragments are shared within the cluster, ensuring no single device can
reconstruct the complete model updates. Once all fragments are shared, a cluster
model is aggregated by summing the corresponding shares.

Fig. 2: Overview of the proposed BFL architecture

Validation: Once a cluster model is generated, it is validated against the
global model using a threshold parameter T and a ceiling C. The condition is:

min (Lglobal × T, Lglobal + C) ≥ Lcluster

Here, Lcluster represents the loss of the cluster model, and Lglobal is the loss of
the global model. The blockchain maintains a sequential record of both models.
When sufficient cluster models are collected, a new global model is aggregated
and validated through consensus.

3.2 Model Storage

Due to the models’ size, the blockchain does not store the models directly. In-
stead, a reference to the storage location and a hash of the model weights are
stored. This ensures integrity and reduces blockchain storage requirements.

4 Experimentation

We conducted two experiments using an NVIDIA RTX 4090 GPU on three
architectures: a classic CFL, a verified CFL (CFL-V), and a BFL architec-
ture using consensus. For our tests, we set the threshold T = 1.05 and ceiling
C = 0.08 for CFL-V and BFL, simulating random and targeted poisoning.
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In the first experiment with CIFAR-10 using MobileNet-v2 and 18 clients in
clusters of 3 over 50 training rounds, the CFL architecture’s accuracy dropped
to 17.12% due to 6 poisoned clients. In contrast, CFL-V and BFL maintained
accuracies of 81.83% and 81.32%, respectively. The second experiment with
CIFAR-100 and ShuffleNet involved 45 clients. Here, CFL-V underperformed
against BFL, as verification on local models did not generalize well. Targeted
attacks had minimal effects on performance due to the dataset’s 100 classes.

As detailed in Table 1, each architecture exhibited different trade-offs. While
efficient in communication and energy consumption, CFL was highly vulnerable
to poisoning. CFL-V improved robustness by filtering suspicious updates but
incurred higher energy costs. BFL offered the best resilience, maintaining higher
accuracy even under attack, but at the expense of significantly more significant
communication overhead and energy consumption.

Architecture Metric CIFAR-10, MobileNet-v2 CIFAR-100, ShuffleNet

No Pois. Rand (6) Targ. (6) No Pois. Rand (15) Targ. (15)
CFL Loss 0.55 2.28 0.87 1.99 2.18 1.98

Acc (%) 84.49 17.12 75.51 50.37 44.47 50.43

Comm. (Mo) 7805.85 7805.85 7805.85 11803.88 11803.88 11803.88
Energy (MJ) 0.33 0.37 0.30 0.29 0.27 0.32

CFL-V Loss 0.64 0.68 0.81 2.54 2.57 2.55
Acc (%) 83.76 81.83 76.59 34.83 33.98 34.54

Comm. (Mo) 7805.85 7805.85 7805.85 11803.88 11803.88 11803.88
Energy (MJ) 0.43 0.41 0.39 0.53 0.52 0.51

BFL Loss 0.61 0.65 0.57 1.93 2.06 1.98
Acc (%) 83.96 81.32 84.28 49.5 45.86 47.98

Comm. (Mo) 48133.65 47561.16 48133.65 71315.45 23581.02 23581.02
Energy (MJ) 0.94 0.98 0.95 1.5 1.84 1.82

Table 1: Performance comparison of CFL, CFL-V, and BFL architectures on
CIFAR-10 (MobileNet-v2) and CIFAR-100 (ShuffleNet) under different poison-
ing scenarios.

5 Conclusion

Our experiments demonstrate that the BFL architecture is effective and reliable.
In contrast, CFL is prone to a single point of failure and suffers performance
degradation from poisoning attacks. The decentralized structure and consensus
mechanism of our framework ensure stability and accuracy, even with compro-
mised devices.
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