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Abstract. The detection and extraction of noisy manifolds from data
have various applications. In Astronomy, the detection of faint streams
and filaments is particularly difficult due to background contamination,
which immerses and hides them in noise. The biologically inspired Locally
Aligned Ant Technique (LAAT) has been demonstrated as an efficient and
flexible algorithm to detect and denoise versatile structures within noisy
backgrounds. Our contribution extends LAAT two-fold: (1) introduction
of a dynamic local radius, and (2) locally variable pheromone deposition.
The former avoids highlighting spurious patterns in noisy regions and al-
lows smaller jumps in areas with strong alignment. The latter increases
pheromone deposition in fainter zones. We demonstrate this in 2 datasets.

1 Introduction

Astronomers study evolutionary processes and the history of cosmological inter-
actions by analysing the structures left behind, often employing large N-body
simulations [1]. These structures are typically non-linear, ubiquitous, diffuse, of
varying size and density, and immersed in large amounts of background noise,
for which conventional manifold learning techniques fail [2, 3]. Topology and De-
launay tessellation to find the medial axis are computationally expensive, and
their results are sensitive to sampling effects. The recently introduced Locally
Aligned Ant Technique (LAAT) [4] detects an arbitrary number of diffuse mani-
folds of different dimensionality and varying density, embedded in large amounts
of noise and outliers, inspired by the efficient ant colony algorithm [5, 6]. It uses
local alignment information and pheromone dynamics to reinforce faint struc-
tures. LAAT extracts relevant points as first step in the 1D Recovery, Extraction
and Analysis of Manifolds in noisy environments (1-DREAM) pipeline1 [7], that
constructs sparse models of each structure, demonstrated for the cosmic web, jel-
lyfish galaxies, and streams [7, 8, 9]. While LAAT is quite robust concerning its
parameters, it retains more noise around high-density structures, which can be
alleviated by local post-processing [10] that avoids choosing a global threshold.
However, the size and faintness of structures that can be detected are sensitive to
the radius set by the user. In this contribution, we propose two extensions to the
LAAT algorithm, namely a local dynamic radius and dynamic pheromone de-
position. The novel strategies allow the deposition of more pheromones in faint
structures and retain less noise in high-density areas and backgrounds. Sensi-
tivity analysis is performed on a synthetic data set and finally demonstrated in
an astronomical N-body cosmological simulation.

∗support by the National Agency for Research and Development scholarship 2020-21200114.
11-DREAM code publicly available at https://git.lwp.rug.nl/cs.projects/1DREAM
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2 Methodology

LAAT is an ant colony-based algorithm for the efficient detection and extraction
of an arbitrary number of noisy manifolds of different dimensionality and varying
density, demonstrated most notably in Astroinformatics [7, 8, 9, 11]. Assume
n data points of dimension D {xi ∈ IRD}ni=1 and their neighbourhood N i

r with
radius r, that is used to compute local eigenvalues {λd}d≤D and eigenvectors
{vd}d≤D through the principal component analysis (PCA). The transition prob-
ability from xi to one of its neighbours xj ∈ N i

r in the original LAAT formulation
[4] depends on two quantities: 1) the alignment of the jump vector (xj − xi)

with the eigenvalues vd computed as angle | cosα(i,j)
d | weighted by the eigen-

values λd. And 2) the biologically inspired normalized pheromone value F
j
(t)

at point xj at time t accumulated in previous visitations. Both together not
only highlight dense regions (as the Markov Chain) but also fainter areas with
dominant eigenvectors that indicate manifold structures. While its parameters
are quite robust concerning stochastic variations of the data, the global choice
of certain hyper-parameters limit the result. For example, a global pheromone
threshold can retain more noise in areas of high density or lose fainter struc-
tures of low density, which can be tackled by local thresholding [10]. Similarly,
a global neighbourhood radius r for the ant’s transition probabilities limits the
size of the structures that can be found. Therefore, we present LAAT exten-
sions of dynamic radius and pheromone deposition, to improve the detection of
manifolds of vastly different sizes and densities.

2.1 Dynamic radius

We propose a dynamic radius for each data point xi that is more likely to deposit
more pheromone on points that are part of a manifold than noise. Since there
is no clear mathematical definition of the astrophysical structures of interest,
an objective function cannot be obtained from theoretical considerations. Intu-
itively an objective function should: 1) Choose a large radius in areas without
preferred alignment, to allow bigger jumps of the ants, which result in quicker
traversal and smaller amounts of pheromone deposited. Those areas typically
occur in either (1a) background noise or (1b) isotropic overly dense space. A
bigger radius allows the ants to escape dense attraction zones and reduces the
probability of highlighting random small over-densities within the noise. 2)
Choose small and medium radii in (2a) manifold structures, allowing the ants
to spend more time and therefore deliver more pheromone in them. Prefer the
smallest radii in (2b) low density areas of the structures producing a greater
balance in the distribution of the pheromone throughout the entire manifold.

Most aims depend only on the alignment of the respective neighbourhood.
Except for 2b, which is based on the structure itself, which cannot be determined
locally and is left for future work. To tackle (1a-2a) we propose an objective
function that considers the robustness of alignment in the presence of a data per-
turbation. We introduce two values Rmin (Rmax) ∈ R, representing the minimum
(maximum) possible radius and K, a constant chosen by the user to determine
the maximum number of radii associated with each point, to steer computa-
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tion and memory costs. Hence, for every point xi we associate a set of radii
ri = {{r1i , r2i , ..., r

Ki
i } | rki < rk+1

i ∀k}, where 1 ≤ Ki ≤ K. Each neighbourhood
N i

rk := B(xi, r
k
i ) is associated with a number of neighboursmk

i induced by radius

rki . We impose mk
i < mk+1

i ∀k as we are interested in unique neighbourhoods,
and hence Ki can be strictly minor than K. For simplicity we define mmin

i and
mmax

i as the number of neighbours in B(xi, Rmin) and B(xi, Rmax) and mth as
the minimum number neighbours for a radius to be accepted, to compute PCA
properly.We chose mk

i to increase linearly with the radius:

m̂min
i = max{mth,m

min
i }; dti = max

{(
mmax

i − m̂min
i

)
/(K − 1), 1

}
(1)

mk
i = m̂min

i + ⌊dti(k − 1)⌋ for 1 ≤ k ≤ Ki; Ki = min{mmax
i − m̂min

i + 1,K}.

The neighbourhoods defined by each set of radii ri are associated with a set

of eigenvectors Vk
i = {V k

i }
Ki

k=1 and eigenvalues Λk
i = {λ(k,d)

i }Dd=1, with Vk
i =

{v(k,d)
i }Dd=1, where v

(k,d)
i is the d-th eigenvector of neighbourhood N i

rk . The
alignment preference [4] for moving from xi to xj in neighbourhood k is:

E
(j,k)
i =

D∑
d=1

| cosα(i,j)
d |∑D

d′=1 | cosα
(i,j)
d′ |

· λ
(k,d)
i∑D

d′=1 λ
(k,d′)
i

with j ≤ mk
j . (2)

We propose a robustness criterium to determine the probabilities for each lo-
cal radius rki to be chosen for transition. Concretely, we define two ways to drop-
out a percentage from each neighbourhood N i

rk and measure the difference of
the eigenvectors before and after. a) Major drop-out removes neighbours with

the highest preference values E
(j,k)
i and b) random drop-out removes with

equal probability. Subsequently, we use the Grassmann distance dG (or Bhat-
tacharyya, Hellinger) to measure the difference between the subspace spanned

by the eigenvectors Vk
i before, and Ṽk

i after neighbourhood perturbation:

dG(Vk
i , Ṽk

i ) =
D∑

d=1

arccos

[
|⟨v(k,d)

i , ṽ
(k,d)
i ⟩|

∥v(k,d)
i ∥ · ∥ṽ(k,d)

i ∥

]
; 1 ≤ k ≤ Ki , (3)

with 0 ≤ dG|ki =
2

πD
dG(Vk

i , Ṽk
i ) ≤ 1. We furthermore tested two radii se-

lection probabilities. Parallel preference Pp favours radii which preserve the
original neighbourhood alignment information, and orthogonal preference Po

increases the probability for radii that change the alignment:

Pp(r
k
i ) =

e− log(Ki)(dG|ki )
2∑Ki

k′=1 e
− log(Ki)(dG|k′

i )
2 ; Po(r

k
i ) =

e− log(Ki)(1−dG|ki )
2∑Ki

k′=1 e
− log(Ki)(1−dG|k′

i )
2 , (4)

for 1 ≤ k ≤ Ki. One could use local factors similar to the perplexity of tSNE [12],
which requires non-linear problem solving. As computationally cheap alternative
we use log(Ki) that increases (decreases) the certainty of choice at points that
have more (fewer) radii to choose from. Intuitively, background noise regions
tend to have fewer radii than dense ones, inducing a more uniform choice.
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Fig. 1: a) Synthetic jellyfish. b) 14% of points highlighted by old LAAT. c) 22.5% of
high pheromone points comparing the best LAAT and best dynamic radius. d) 15% of
highlighted points for dynamic pheromone deposition with different βph.

2.2 Dynamic pheromone deposition

Like the Markov Chain, LAAT visits high-density regions more often, and hence
accumulates more pheromone there. This effect is further amplified, since the
ants are also attracted by pheromones, enabling them to reinforce weak signals.
However, this can also trap them in dense attractors, as often seen in astronomi-
cal data in the form of Galaxies, Globular Clusters, and nodes of the cosmic web.
To alleviate this effect we vary the pheromone deposited on visitation based on

the transition preference E
(j,k)
i from xi to neighbour xj :

F j(t) = e
−βph

(
1−E

(j,k)
i )

)
with 1 ≤ j ≤ mk

i , (5)

and mk
i being the number of neighbours in neighbourhood N i

rk , and the ad-
justable parameter βph that determines the importance given to aligned points.

3 Experiments and Discussion

In this section, we perform a parameter sensitivity analysis of the new dynamic
radius and pheromone deposition using a synthetic jellyfish galaxy as introduced
in [7]. Furthermore, we demonstrate the improvements on a cube of 403 Mpc3/h
selected from a Dark Matter-only N-body cosmological simulation with≈ 2.7·105
particles. We always use 100 epochs and K = 100 radii. In the first (second)
experiment we use 53 ants (73 ants), with 2500 (12000) steps and radii in [1,4]
(0.05 to 1.5 Mpc/h). Other parameters were set to default.

The synthetic jellyfish: consists of two branches and a head, immersed in Gaus-
sian noise, each part being composed of 104 data points, shown left in Figure 1.
For the systematic test, we compare the minimum amount of high pheromone
points highlighted by the different strategies and parameters, that are neces-
sary to retain the structures without losing relevant information in Table 1. We
consider a structure recovered if the subsequent application of the 1DREAM [7]
pipeline is able to model the full backbone. The synthetic jellyfish exhibits two
difficulties, namely the head has no alignment and the filaments vary in density.
The old LAAT accumulates pheromone unevenly in the structures, favouring
dense parts over the faint filament areas and the effect exacerbates with in-
creasing radius. Panel b) of Figure 1 shows that a small radius allows the ants
to spend more time in filamentary structures, fulfilling aim (2a), while bigger
radii accumulate higher amounts in dense regions, useful to achieve the aim (1a
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Table 1: Minimun data necessary to recover the full jellyfish structure

1) Fixed radius with variable pheromone delivered

Strategy \Radius size 1.0 2.0 3.0 4.0

Old LAAT 29.0% 32.5% 36.5% 40.0%

βph = 1.0 27.0% 31.5% 35.0% 37.5%

βph = 2.5 27.0% 32.0% 33.5% 36.0%

βph = 5.0 27.0% 26.5% 30.0% 27.5%

βph = 7.5 30.0% 28.0% 21.5% 14.5%

βph = 10.0 29.0% 27.0% 24.5% 20.5%

2) Dynamic radius

Strategy \Drop-up percentage 15.0% 30.0% 45.0%

Parallel + Major drop-out 39.0% 49.0% 49.0%

Orthogonal + Major drop-out 27.5% 22.5% 31.5%

Parallel + Random drop-out 38.0% 42.0% 39.5%

Orthogonal + Random sort 41.0% 38.0% 37.0%

3) Best case, Orthogonal + Major sort at 30% of drop-out

βph = 1.0 βph = 2.5 βph = 5.0 βph = 7.5 βph = 10.0

22.5% 23.5% 25.0% 28.0% 30.0%

and 1b), but not all at once when using a fixed radius. The best model with
dynamic radius to achieve all these aims uses orthogonal preference with 30%
Major drop-out, as shown in panel c). It favours small radii in areas with strong
alignment information, and bigger ones where the eigenvectors change a lot with
perturbation, which is the case in dense regions and background noise. The par-
allel preference has the opposite effect. The major drop-out removes key points,
which is a stricter measure of robustness than random drop-out, which produces
better results. In contrast to the dynamic radius the dynamic pheromone is intu-
itive to understand and model. It deposits more pheromone in areas with strong
alignment than areas without, which counteracts the accumulation in dense re-
gions to even it with fainter structured ones. Increasing β increases this effect
as shown in Table 1 and Figure 1d). In contrast to the dynamic radius this is a
global criterium and the result depends highly on the interplay between β and
the radius, making it quite sensitive and difficult to set on its own. However,
combined with the dynamic radius it becomes less sensitive and produces better
results than almost every setting of the old LAAT.

The Cosmic web data: demonstrates the behaviour of the new LAAT in an
astronomical application. Panel b) and c) Figure 2 show 50% of the data high-
lighted with the old and new LAAT. The old version needs a fixed radius of 1.5
Mpc/h, since smaller ones have many neighbourhoods underflow. This is avoided
with the dynamic strategy and hence increases user-friendliness. Furthermore,
the distinct union plot in panel d) shows that old LAAT keeps more noise around
the high-density nodes and misses a lot of faint filaments as compared to the
new strategy, that surpasses the old one substantially, detecting filamentous
structures more effectively and better defined, requiring less information.
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Fig. 2: a) cosmic web Dark Matter-only N-body simulation. b) and c) 50% of the data
highlighted with old LAAT with 1.5 Mpc/h radius, and the best new LAAT model. d)
the distinct union shows new LAAT retains fainter filaments.

4 Conclusions and future work

This paper presents improvements to the Locally Aligned Ant Technique (LAAT)
for the detection and noise removal of multiple diffuse manifolds in the presence
of large amounts of noise and outliers. The dynamic radius and pheromone
extension are more robust and user-friendly, highlighting structures more clearly,
and needing fewer points for it. In future work, we will replace high dense areas
with sparse models in the ant algorithm to avoid local attractors even further.
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