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Abstract.
Encoding categorical variables impacts model performance and can intro-
duce bias in supervised learning, particularly affecting fairness when some
groups are under-represented. We analyze the effects of different encoding
methods on synthetic and real datasets to mitigate unintended model
reliance on specific variables. We propose CaVaR (Categorical Variable
Reliance) to quantify model reliance on variables and an Availability Index
to measure CaVaR’s sensitivity to partial encoding changes. A high Avail-
ability Disparity, measured by the standard deviation of the Availability
Index across encodings, highlights potential bias from mixed encodings.
The results suggest encoding all categorical variables uniformly, regardless
of their ordinal or nominal nature, may reduce bias, with the choice guided
by computational and performance considerations.

1 Background and motivations

In machine learning, it is common to encounter various data types that need to
be properly encoded before being input into the learning model. Some models,
such as linear models and neural networks, work well with quantitative data and
require numerical inputs [3]. Other models, like decision trees and grid models,
can also handle qualitative data, such as categorical variables [5]. Due to the
increasing importance of neural networks in modern AI, it is crucial to correctly
encode categorical variables to ensure these models function properly, achieve
good generalization, and avoid bias1 This is the focus of this paper.

Categorical variables are variables that can take one value from a finite set of
possible values. Each possible value of a variable is referred to as a level. We
consider two types of categorical variables: ordinal variables with a meaningful
ordering, e.g., education levels, and nominal variables, which are qualitative with
no meaningful ordering, e.g., race. Although nominal variables may be numbered
(e.g., user ID’s), these numbers do not indicate any particular order. Textbooks
and on-line resources[6, 10] usually recommend encoding ordinal and nominal
variables differently. Typically, ordinal variables are encoded with a numeric
value using their natural order (referred to as “Natural Ordinal” encoding). In
contrast, nominal variables are encoded with “One-Hot” encoding, converting
k-level categorical variables into a k-dimensional binary vector representation
where only one of the levels is “hot” (set to 1) for each observation, while all the
others are “cold” (set to 0) [11]. However, these “typical” encoding choices are

1To facilitate the reading of this paper, we added a glossary in appendix provided here:
https://github.com/danielkopp4/ESANN2025Appendix. However, this paper should be read-
able without the appendix.
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far from neutral. Changing the encoding of a variable can influence the model’s
reliance on that variable, thereby affecting how well the model generalizes to
unseen data. For instance, a model may find it easier to learn a relationship with
a variable that has a weaker dependence on the target compared to another, a
phenomenon often referred to as shortcut learning [2]. In the case of protected
variables (such as gender or race), shortcut learning can be associated with
fairness issues by reinforcing or introducing societal biases.

2 Problem setting and methodology

Problem Setting. We study supervised learning problems where data samples
(x, y) ∈ X d × Y are drawn from a joint distribution P (x, y) = P (x)P (y|x). The
goal is to approximate P (y|x) using machine learning (ML).

Training data {(x1, y1), . . . , (xn, yn)} are drawn iid from P (x, y). We treat
the learning process, including encoding, as a black-box model M that outputs an
estimator P̂M (y|x) of P (y|x). In our experiments, encoding is the only variable
adjusted; all other factors, including hyperparameters, are held constant. If
a variable is disproportionately emphasized in P̂M (y|x), failing to reflect true
statistical dependencies, bias may be introduced. Here, we assume all components
of x are categorical variables and focus on encoding’s effect on algorithmic bias.

Categorical variables are drawn from a discrete joint distribution, where a
“cell” represents a specific combination of variable levels (e.g., if x is composed of
the two variables “race” and “education level”, individuals with “graduate school”
education and “Black” race form one cell). Each variable xi can take ki levels, and
the discrete domain of inputs is represented by a tensor X of size K =

∏d
i=1 ki,

covering all cells.
Training data follow the natural distribution P (x), while test data are drawn

either from the same in-domain distribution or an out-of-domain uniform distri-
bution where all cells in X have equal probability, including unseen cells.

Methodology. To assess the impact of disparate variable encoding on
algorithmic bias, we introduce CaVaR (Categorical Variable Reliance), a metric
that quantifies the reliance of a predictor P̂M (y|x) on a subset S of categorical
variables. This reliance is measured by evaluating prediction changes when values
in S are permuted, neutralizing S’s effect during inference. The formula is:

CaVaRS(M) =
1

κ×K

∑
π∈Π(S)

∥∥∥P̂M (y = 1|X)− P̂M (y = 1|π(X))
∥∥∥
1
, (1)

where Π(S) is the set of κ permutations of S (that can be subsampled
for computational reasons), K is the number of cells in X, and the L1-norm
difference quantifies the model’s reliance on S. This computation does not depend
on ground-truth y, making it robust to under-represented cells in real data.

To study encoding effects on M , assume all variables use encoding a, except
S, which uses b, represented by M [a, S ← b]. We introduce the notation:
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CaVaRS(b; a) = CaVaRS(M [a, S ← b]) . (2)

CaVaRS(a; a) reflects reliance under uniform encoding a, while CaVaRS(b; a)
shows reliance when S uses b. Averaging the differences across all b ̸= a and
subsets S yields the Availability Index:

Avail(a) =
1

NS × (C − 1)

∑
S

∑
b̸=a

(CaVaRS(a; a)− CaVaRS(b; a)) . (3)

A high positive Avail(a) indicates greater reliance when variables are encoded
with a compared to b. Variability in Avail(a) across encodings is summarized by
the Disparity Index:

Disparity = Std(Avail(a)). (4)

If Disparity is high, using mixed encodings risks bias by favoring certain
variables. Conversely, near-zero Disparity suggests mixed encodings are safe.
When Disparity is significant, we recommend uniform encoding for all variables
to avoid bias.

3 Experimental conditions

After evaluating various encoding strategies (Appendix C), we selected One-Hot,
Ordinal, and Target Continuous encodings for illustration. We also introduce
Random Ordinal and Target Ordinal, as specialized forms of Ordinal encoding.

One-Hot encoding is emphasized for its widespread use with nominal variables
and its neutrality, as it avoids assumptions about category relationships. In
contrast, Ordinal encodings incorporate prior information, which can either aid
or hinder model learning. Random Ordinal represents a worst-case scenario, as
arbitrary ordering introduces spurious continuity, implying nonexistent interpola-
tion between levels. In our experiments, we average results over multiple random
orderings. Target Ordinal assigns integers 0 to k − 1 (where k is the number
of levels) to maximize correlation with the target. Target Continuous encoding
maps categories directly to their target variable means, often outperforming
Target Ordinal unless tied means cause level merging.

Experiments were carried out on synthetic and real data, described in details
in Appendix B. Briefly, the synthetic datasets consist of two-dimensional binary
classification problems, with both input variables x1 and x2 having 8 levels. They
were designed to illustrate various special cases:
Synthetic Simple: x1 and x2 are identical and identically dependent on y; any
difference in variable availability can only arise from coding.
Synthetic Crossed: This example (similar the the XOR problem) is designed
such that neither variable is individually correlated with the target and all values
in the marginal distributions are tied. Target Continuous encoding is expected
to fail on that example.
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Synthetic Doughnut: This is another example of non-linearly separable classes,
in which neither variable is correlated with the target. It is designed to show
that Target Encoding can be beneficial even when variables are not correlated
with the target, if values in the marginal distributions are not tied.

The real datasets, described in details in Appendix B, comprised of Adult
Income [1], Bank Marketing [7], Cardiovascular Disease [4], Cook County Sen-
tencing [8], and Mushroom [9]. Their number of features vary between 11 and
22. The number of samples is between 8124 and 266435 samples. The maximum
number of levels is between 8 and 1316.

For all datasets, we used 50 examples of each class for training to exacerbate
the difficulty of generalizing well out-of-domain. The choice of the same number
of examples per class is to simplify the analysis and avoid adding a factor of
variability that may confound the results. In future work, we could also vary the
number of examples per class. For real data, we used all the remaining samples
as test data (so called identically and independently distributed or iid test set)
and for synthetic data, we drew 1000 samples from the same distribution as
the training data. We use the test samples to evaluate the Balanced Accuracy
(average of the accuracy on the positive class and the negative class). Additionally,
we created a second test set to evaluate both the Availability and Disparity indices,
populating the tensor X, providing values for the levels in the ranges defined by
the training data distribution, but enforcing uniform sampling.

All experiments reported in the next section were carried out with a 2 layer
neural network with 5 hidden units and weight decay regularization of 0.01, using
the scikit-learn package. Experiments with various other models are provided as
supplemental material in our Github Repo.

4 Results

Visual inspection of the two-dimensional Simple Synthetic data example (Ap-
pendix E) demonstrates that encoding variables in different ways can change
their availability and therefore result in bias. This suggests that all variable
should be encoded in the same way, regardless of whether they are nominal or
ordinal, to avoid exacerbating or introducing bias. Because of space limitations,
we only discuss in the body of the paper the results of Table 1, which present
systematic experimental comparisons of a selection of codes on synthetic and
real data, for the two-layer neural network.

We chose a neural network because encoding categorical variables as numerical
values is required for such models. We chose two layers and 5 hidden units to
have a small model that is capable of making non-linear separations. We also
chose to train models on very few examples (50 of each class) so data sparsity
will affect variable availability more strongly. We compute the balanced accuracy
(average of the accuracy on the positive class and the negative class) and whether
encoding affects variable availability with the Availability Index (Equation 3).
The last column is encoding Disparity (Equation 4). A positive Disparity is a
red flag for mixing codes.
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Table 1: Performance indices for various datasets, real (top) and synthetic (bottom). All
error bars are on the last significant digit shown (see details in Appendix F). Disparity is
significantly positive for all datasets, hinting that the same code should be used for all variables
to avoid coding bias. One-Hot encoding is generally best, except in a few cases (see text). The
significance of the effect was assessed using error bars, as explained in the appendix (Section
F).

Let us first analyze Balanced Accuracy results that are obtained by coding
ALL variables in the same way (first 4 columns), to evaluate whether some
codes yield better performance than others overall. At first glance, we notice
One-Hot encoding is generally best and Random Ordinal worst. This is true
on average for the datasets considered. There are only 2 exceptions: (1) For
Cardiovascular disease, Target Encoding is better. This can be explained by
the fact that the variables in that dataset are discretized versions of continuous
variables, hence they are all ordinal. There is therefore no benefit of One-Hot
encoding, known to be tailored to representing nominal variables well, but at the
expense of loosing order information for ordinal variables. (2) Another interesting
case is that of the Mushroom dataset: there, Target Continuous encoding does
not do better than Random Ordinal but Target Ordinal encoding yields similar
performance as One-Hot encoding. The good performance of One-Hot encoding
is explained by the fact that all variables are nominal. The better performance
of Target Ordinal compared to Target Continuous is more subtle. Intuitively,
one might think the Target Continuous is a more informative code because
Target Ordinal is a discretized code. However, when mean target values are tied,
Target Continuous assigns the same value to multiple levels, resulting in a loss
of information. Two competing factors determine why one code may be more
informative than another, as demonstrated in our synthetic examples designed
to highlight this effect. In the Synthetic Crossed example, perfect ties across
all levels render Target Continuous non-informative (all levels map to the same
value). In contrast, for the Synthetic Doughnut example, Target Continuous
outperforms Target Ordinal.

Let us now turn our attention to the Disparity Index. The Disparity is always
significant compared to 0, within the error bar, indicating that all variables
should be encoded uniformly. This effect is more pronounced in synthetic
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examples, as real data lacks controlled joint distributions and variable redundancy.
Examining Availability reveals a strong correlation with Balanced Accuracy. One-
Hot encoding generally maximizes variable availability and is preferable, even
with small datasets. Target Ordinal ranks second in Availability but performs
worse in Balanced Accuracy, likely due to the issue of ties previously discussed.

5 Conclusion

Our findings indicate that encoding categorical variables differently may introduce
bias and we advocate using the same code for all categorical variables to reduce
out-of-distribution bias. The optimal code to be chosen depends on the predictive
model, the number of levels of variables, the amount of available data, and
the specific problem, and can be selected e.g., by cross-validation using the
performance metric (e.g. balanced accuracy).
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