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Abstract. We present Hierarchical Residual Networks (HiResNets),
deep convolutional neural networks with long-range residual connections
between layers at different hierarchical levels. HiResNets draw
inspiration on the organization of the mammalian brain by replicating
the direct connections from subcortical areas to the entire cortical
hierarchy. We show that the inclusion of hierarchical residuals in several
architectures, including ResNets, results in a boost in accuracy and faster
learning. A detailed analysis of our models reveals that they perform
hierarchical compositionality by learning feature maps relative to the
compressed representations provided by the skip connections.

1 Introduction

The fields of artificial intelligence and neuroscience have been closely coupled
since the conception of artificial neural networks (ANNs). One example of this
coupling concerns the development of residual connections, which can be traced
back to the pioneering work of McCulloch and Pitts [1], based on the early
understanding of synaptic connectivity in biological neural networks. Residual
connections, and in particular Residual Networks (ResNets) [2], are nowadays the
staple for very deep ANNs because they can prevent the vanishing gradient and
degradation problems by adding the activations from skip connections. ResNet-
18 is commonly presented as a reasonable approximation of the visual cortex
[3]. ResNeXt [4] is a popular variant which aggregates parallel processing paths.
Residuals are also integral components of other state-of-the-art architectures
such as EfficientNets and Vision Transformers; alternatively skip connections
can concatenate rather than add hidden layer activations, as done in DenseNets
and U-Nets.

Crucially, residual connections have also been found in the brains of insects
[5, 6], rodents [7], and primates [8] – not only skipping single layers as in ResNets
but also with long-range shortcuts from early processing subcortical areas to
the entire cortical hierarchy. The role of these direct connections is not fully
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Fig. 1: HiResNet architecture based on the ResNet-18 with 3 residual blocks.
The hierarchical residual projections consist of an average pooling to match the
height and width, a 1 × 1 convolution to match the number of channels, and
batch normalization.

understood but it is hypothesized that they provide fast information transfer
and enable compositionality [9, 10].

In this work, we extend ANNs on the basis of these neuroanatomical
discoveries about long-range residual connections. Doing so requires dealing
with connections at different levels of hierarchical abstraction, i.e. compression.
We propose the use of hierarchical residuals: rather than learning unreferenced
representations, the deeper layers of the network need to learn feature maps
relative to a straightforward compression provided by simple convolution and
pooling operations. Hierarchical Residual Networks (HiResNets) introduce a
marginal number of additional parameters but result in higher accuracies and
faster training times than ResNets and other popular models.

2 Hierarchical Residual Networks

Here we provide details about the formalism of HiResNets and the innovations
introduced relative to other skip connections. The output G(x) of a residual
connection is the sum of a weighted connection F (x) with a projection P (x):

G(x) = F (x) + P (x). (1)

If P is an identity mapping skip connection, i.e. P (x) = x, then only the
residual function F (x) = G(x) − x relative to the input needs to be learned.
This is the case for the basic block in ResNets, where F is typically a stacking
of two convolutional layers. The other common projection function is a 1 ×
1 convolution, which can account for mismatches in the number of channels
between the input and output of a residual block.

In HiResNets, the same principles are followed to include long-range
connections. First, a network is divided into blocks, within which the height,
width, and number of channels are commonly preserved (see Fig. 1). We use
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#P CIFAR-10 CIFAR-100 Tiny-ImageNet
Version ×103 Top-1 Top-1 Top-1 Top-5

Baseline architecture: Plain
Original 265.0 86.50(0.33) 55.55(0.44) 36.53(1.16) 62.98(0.80)
Adjusted 270.7 87.00(0.49) 55.25(1.00) 36.95(1.23) 63.85(0.91)
HiResNet 270.7 88.27(0.23) 58.74(0.88) 42.22(0.37) 69.08(0.38)

Baseline architecture: ResNet
Original 267.8 89.15(0.31) 60.83(0.56) 43.31(0.83) 69.46(0.67)
Adjusted 273.5 89.16(0.19) 61.25(0.23) 43.452(0.73) 69.75(0.78)
HiResNet 273.5 89.46(0.30) 62.22(0.40) 44.00(0.37) 70.82(0.47)

Baseline architecture: ResNeXt
Original 70.8 85.91(0.36) 55.07(0.28)
Adjusted 76.5 86.65(0.26) 56.24(0.22) 41.73(1.12) 67.28(0.43)
HiResNet 76.5 86.97(0.16) 56.51(0.38) 42.38(1.42) 67.98(0.70)

Table 1: Accuracy comparisons on different datasets. The values reported are
the means and standard deviations over 5 random initializations.

hierarchical residual connections between blocks, such that the output of the
ℓ-th block becomes:

G(xl|xℓ−1, xℓ−2, ..., x0) = F (xℓ) + P1(xℓ−1) + P2(xℓ−2) + ...+ Pℓ(x0) , (2)

where Pk(xℓ−k) is a skip connection from the (ℓ − k)-th to the ℓ-th block. All
projection connections include 1 × 1 convolutions and batch normalization,
potentially preceded by an average pooling layer if the spatial dimensions of
the inputs differ. This allows the residual function F to learn referenced
representations relative to the straightforward compressions of the hierarchical
projections. Because of the pooling and 1 × 1 convolutions, each of these
projections introduces only cℓ−k × cℓ new parameters, where cℓ is the number
of channels of the block.

3 Experiments

3.1 HiResNets outperform baseline models

To illustrate the benefits of using hierarchical residuals, we compare the
performance of HiResNets with different baseline architectures: a plain deep
network, a ResNet, and a ResNeXt with cardinality 4. All architectures have
18 layers of depth, based on the ResNet-18 [2]. Since HiResNets introduce
additional trainable parameters, we also train adjusted versions of the baseline
models by increasing the number of channels in the hidden layers to match the
total number of parameters of the HiResNet.

Each model is trained on classification tasks with CIFAR-10 and
CIFAR-100 [11] and Tiny-ImageNet [12]. Tiny-ImageNet has pre-defined
training, validation, and testing datasets. For CIFAR-10 and CIFAR-100, the
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default testing dataset is used and 10% of the training data is separated for
validation. All models are trained on CIFAR-10 for 80 epochs, CIFAR-100 for
100 epochs, and TinyImageNet for 120 epochs. We use the Adam optimizer
with a learning rate of 0.01, halved every 20 epochs, and batch sizes of 100
images.

The main results are presented in Table 1. We find that the HiResNet
versions of all architectures outperform the baselines for all datasets. This
advantage is most prominent when compared with the plain deep network,
likely because the hierarchical residuals allow for the gradients to reach each
layer of the network faster. The gains with respect to the ResNet and ResNeXt
are moderate, since both models use short-range residuals. As suggested for
ResNets [2], residual connections are most beneficial when used in very deep
networks; the ResNet-18 baseline architecture is barely deep enough.
Nevertheless, since the performance of the HiResNets is higher than the
adjusted versions of the baseline architectures, this suggests that hierarchical
skip connections are a more efficient way of increasing the number of
parameters of a model than merely increasing the depth of the hidden layers.

3.2 Feature maps reveal hierarchical compositionality

Next, we investigate the origins of the performance of HiResNets. To do so, we
explore the contributions of the residual and projection functions in the outputs
of the three blocks. Fig. 2 shows the average absolute activations of all feature
maps of each connection type for all images in the TinyImageNet test dataset. In
all cases, the activations of the projections are approximately half of those of the
residual functions. These results confirm that the outputs of the HiResNet are
mostly driven by deeper connections provided by the residuals, but also that the
model is exploiting combinations of the representations at the different levels to
make its predictions, i.e. it is performing hierarchical compositionality. By way
of example, at the output of the third block the hierarchical connections have
comparable contributions among them, indicating that the residual is learning
representations not only referenced by one of these projections but to all of them.
Alternatively, these results can be interpreted as showing that the compression
provided by the HiResNet projections is useful to backpropagate the loss, as it
provides shortcuts for each layer when computing the gradient descent, which
can quickly connect them to the error at the output layer.

3.3 Output hierarchical residuals are most beneficial

Finally, we evaluate the relative importance of the different hierarchical
residuals by performing an ablation study. Eq. (2) represents the general case
in which all possible projections are used, which we refer to as the default
HiResNet. However, it is unlikely that all hierarchical residuals are equally
important. We hypothesize that two variants of this architecture may provide
interesting computational advantages inspired by the subcortico-cortical
shortcut connections of the brain: the HiResNet-In introduces residuals from
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#P CIFAR-10
Version ×103 Top-1
ResNet (orig.) 267.8 89.15(0.31)
ResNet (adj.) 273.5 89.16(0.19)
HiResNet 273.5 89.46(0.30)
HiResNet-In 269.6 88.96(0.13)
HiResNet-Out 272.3 89.37(0.18)
HiResNet-P1 270.6 89.20(0.17)
HiResNet-P2 269.6 88.78(0.24)
HiResNet-P3 269.0 88.93(0.23)

Table 2: Accuracy comparisons on
ResNets and ablated versions of
HiResNets.

0 1 2
Average activations

Block 1
input
residual

Block 2
input
block 1
residual

Block 3
input
block 1
block 2
residual

P3
P2
P1
F

Fig. 2: Average absolute
activations of projections and
residuals in each block.

the first convolutional layer to all residual blocks; the HiResNet-Out introduces
residuals from all residual blocks to the last one before the output.

We repeat the CIFAR-10 experiments using the ResNet as a baseline
architecture with six alternative versions of our model: the default HiResNet,
the HiResNet-In, the HiResNet-Out, and additionally HiResNet-P1,
HiResNet-P2, and HiResNet-P3, which only include the first, second, and
third hierarchical residuals, respectively. As shown in Table 2, the full
HiResNet achieves the best performance. However, among the ablated
versions, the HiResNet-Out is nearly as accurate as the full model, despite
having fewer parameters. On the other hand, the P1 version achieves
comparable accuracy to the ResNets, whereas the HiResNet-In and the P2 and
P3 versions all produce lower performances. Therefore, we conclude that while
all skip connections may be of use for the HiResNet, the residuals that connect
the input to the output faster are most beneficial, likely because they enable
better hierarchical compositionality. This will be of particular relevance if
hierarchical residuals are used in larger models, where adding too many skip
connections can result in an excessive increase in the amount of parameters.

4 Conclusion

In this work, we introduce the Hierarchical Residual Network (HiResNet), a
brain-inspired architecture with long-range residual connections between blocks
at different hierarchical levels. HiResNets can outperform ResNets and other
ANNs, achieving higher classification accuracies and faster learning times, by
exploiting hierarchical compositionality. These results reveal that long-range
shortcut connections are a more efficient method to expand the number of
parameters of a model than to increase the layer depth. Further experiments
are required to determine whether hierarchical residuals are also beneficial in
very deep networks, e.g. ResNet-101, and other classes of architectures, e.g.
Vision Transformers, potentially by increasing the complexity of the shortcut
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connections. Furthermore, it remains to be seen whether the biological
inspiration of the HiResNet translates into this model better reproducing
hierarchical processing effects of biological neural networks, e.g. incongruences
between low- and high-level features. This work shows that the coupling
between artificial intelligence and neuroscience is still worth exploring, as there
is much potential to be gained by drawing inspiration from biological brains.
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