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Abstract. Non-stationary environments subject to concept drift require
the design of adaptive models that can continuously learn and update.
Two primary research communities have emerged to address this chal-
lenge: Continual Learning (CL) and Streaming Machine Learning (SML).
CL manages virtual drifts by learning new concepts without forgetting
past knowledge, while SML focuses on real drifts, rapidly adapting to
evolving data distributions. However, a unified approach is needed to bal-
ance adaptation and knowledge retention. Streaming Continual Learning
(SCL) bridges the gap between CL and SML, ensuring models retain use-
ful past information while efficiently adapting to new data. We explore
key challenges in SCL, including handling temporal dependencies in data
streams and adapting latent representations for personalization and knowl-
edge editing. Additionally, we identify promising SCL benchmarks which
can foster and promote a unified research effort between CL and SML.

1 Introduction

The world we live in is inundated with data. The rise of Social Media and the
Internet of Things in the last decade has driven rapid data growth, generat-
ing continuous, unbounded flows called data streams. These streams produce
infinite sequences of elements that arrive over time and cannot be accessed si-
multaneously. A significant challenge is developing learning models that adapt
to data’s continuously evolving nature. Data may, in fact, change its distribu-
tion over time, causing the problem of concept drift. Concept drift is defined
as an unforeseeable change in the data-generating process that induces a change
in the statistical properties, which is more significant than random fluctuations
or anomalies [1, 2]. A concept is the unobservable process that generates data.

Concept drifts can be categorized into two main types: virtual and real.
Given a machine learning problem, a virtual concept drift happens when the
input or the target distribution changes without affecting the rules that map the
inputs to the desired targets. For example, in a classification problem that maps
the inputs X to the labels y, a concept drift changes the probability P (X|y) or
P (y) without affecting P (y|X). On the other hand, a real concept drift changes
the mapping rules between inputs and targets. In a classification problem, this
change impacts the probability P (y|X). For instance, in credit scoring, where
the goal is to predict loan default risk based on factors like income and credit
history, virtual concept drift occurs when the distribution of these factors shifts
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over time without altering their relationship with default risk, keeping the deci-
sion boundary unchanged. In contrast, real concept drift arises when economic
changes, market trends, or new financial policies reshape this relationship, mean-
ing that the same income and credit history may now indicate a different level
of risk. This requires the model to adapt its decision boundary.

Due to concept drift, it is unfeasible to accumulate the data in a repos-
itory and train the model offline. First of all, the repository would contain
inconsistent data due to concept drift during data acquisition, and, in addition,
subsequent concept drift would render to model obsolete, thus requiring mas-
sive re-training using a new repository. The model should, instead, continuously
learn and update using the data stream. Two communities emerged to reach
this end: Continual Learning (CL) [3] and Streaming Machine Learning
(SML) [4]. The main distinctions between the two lie in their objectives and
the types of drifts they manage. The most prominent CL approaches, such as
class-incremental learning, rely on data streams where each element is a large
batch (experience) of unordered data points representing a concept. Each new
experience introduces a virtual drift describing a new subproblem specified in
a new feature distribution. The new concept does not contradict the previous
since it is defined in a new feature subspace. The goal of a CL agent is to solve
the new subproblem without forgetting the previous ones. Conversely, a data
stream is a sequence of single data points in an SML setting, and drifts may
be real. Since a real drift produces changes in the decision boundary, the new
concept may contradict the previous. An SML model cannot, thus, solve both
the machine learning problems together. The goal is, instead, to continuously
detect changes and adapt as rapidly as possible to new problems, minimizing
resource usage.

Online CL (OCL) [5] represents a first step towards converging the two
communities. OCL approaches the SML setting by splitting each experience into
mini-batches provided over time and containing tens of data points. However,
OCL still aligns with the CL objectives in virtual drifts.

Continual reinforcement learning (CRL) [3] assumes that the environ-
ment itself changes over time, thus partly invalidating previously learned poli-
cies, which is analogous to SML scenarios. Denker et al. [6] present “Reward-
incremental reinforcement learning” as a part of this special session, where vir-
tual and real concept drifts may occur due to non-stationary environments.

Conversely, avoiding forgetting assumes a new meaning in real streaming
scenarios. Whereas adapting to the current concept is important, the knowledge
associated with the previous concepts can be helpful when a drift introduces a
new concept that resembles an earlier one, or when an old concept re-occurs
over time. Additionally, parts of previous knowledge may remain valid after a
drift. Streaming Continual Learning (SCL) denotes a significant innovation
in this direction. The need for SCL was initially expressed by Gunasekara et
al. [7] and then elaborated by Giannini et al. [8]. SCL is a unified setting
combining SML and CL methodologies to quickly adapt to changes without
forgetting meaningful information from the past. It ensures that models retain
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relevant knowledge while discarding obsolete information based on the evolving
needs of the environment. SCL may offer a robust approach by balancing the
retention of general knowledge and the ability to adapt to new data quickly.

Vaquet et al. [9] present “Compression-based kNN for Class Incremental
Continual Learning” as part of this special session. The work investigates the
challenge of forgetting in data streams from an SCL perspective. It explores
the transfer of strategies from SML to CL. The authors propose a compression-
based kNN scheme to address forgetting and re-occurring concepts, contributing
to integrating SML and CL paradigms.

Finding an appropriate setting for applying SCL is crucial in many real-world
streaming applications. This paper analyzes specific aspects of this challenge,
such as handling temporal dependence in a data stream (Section 2) and adapting
latent representations (Section 3). Section 4 emphasizes the need for a common
benchmark between the SML and CL communities, which operate on different
datasets and problems. Finally, Section 5 elaborates on our conclusions.

2 Learning from temporally dependent data

Temporal dependency refers to the situation where the value of a given data point
depends on previous observations. Several works [10, 11, 12, 13, 14] highlighted
the importance of accounting for temporal dependency when solving machine
learning problems on data streams, as it reflects how the data evolves and how
current outcomes can be predicted based on prior information. Formally, this
can be expressed as: ∃τ P (at | bt−τ ) ̸= P (at), where at ∈ Xt ∪ {yt} is the feature
or target at time t, and bt−τ ∈ Xt−τ ∪ {yt−τ} represents the feature or target
at time t− τ . Here, Xt and Xt−τ are the feature sets at times t and t− τ , and
yt and yt−τ are the corresponding targets. The temporal dependency indicates
that past data points influence the current data point’s probability distribution.

The presence of temporal dependencies influences many real-world scenarios.
Let us consider, for example, the Internet of Things, where sensors continuously
collect data over time. Particularly in the context of weather stations recording
temperature, each new temperature reading is influenced by previous measure-
ments. For instance, the current temperature is influenced by the temperature
recorded in the past few hours or days. Temperature often follows specific pat-
terns, such as daily fluctuations due to the day-night cycle or seasonal trends.

Similarly, in video surveillance systems, temporal dependency is fundamental
for tasks like object tracking. The position of an object in one frame is strongly
influenced by its position in the preceding frames, as objects in motion tend to
follow a continuous path. This sequential relationship helps the system predict
where the object will appear next.

Sometimes, the temporal dependencies observed in a data stream can result
from spatial dependencies in the real world. Consider, for example, satellite im-
agery analysis. The temporal dependency may arise from the physical movement
of the satellite along its orbit. As the satellite moves along a defined trajectory,
each new observation is related to previous ones, not because of a time-based
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correlation but due to the spatial continuity of the observed region. At time t,
the satellite captures an image of a specific Earth location. At time t + τ , the
satellite captures an image from a neighbouring location along its path.

In robotics, a robot’s actions, such as movement or decision-making, are
often influenced by its previous states. For instance, the robot’s current position
and orientation are directly linked to where it was in earlier time steps. The
robot moves through a sequence of actions and decides at each step based on
the history of its movements.

Despite the crucial role of temporal dependency in streaming scenarios, SML
and CL usually do not consider it and assume data points to be independent.
Time Series Analysis (TSA) [15] is explicitly meant to address temporal
dependency, even if rarely applied in streaming settings. In recent years, the
forecasting potential of deep learning models has emerged [16], where variants
of Recurrent Neural Networks (RNNs) are widely applied. Betti et al. [17]
present “Stability of State and Costate Dynamics in Continuous Time Recurrent
Neural Networks” as part of this session to study RNNs streaming applications.
This work investigates stability in continuous-time RNNs, a crucial property
for ensuring safe and reliable lifelong learning. It provides key conditions for
achieving bounded state and costate dynamics, leveraging concepts from optimal
control theory to enhance stability.

Moving towards an SCL perspective, integrating SML and CL methodologies
could provide a viable solution for managing temporal dependencies when learn-
ing from data streams. Since TSA widely applies RNN models, one may use
them online in an SML way to learn continuously and tame temporal dependen-
cies between data points. Two works [18, 14] have proposed the application of
RNNs in an SML scenario. Their solutions accumulate data points from a data
stream in fixed-size mini-batches. Whenever a mini-batch is complete, they build
sequences of items using a sliding window and train an RNN model continuously.
This way, they tame temporal dependencies while learning continuously.

One may consider CL architectural strategies to boost the adaptation to
new concepts and avoid forgetting crucial past information. CL is, in fact,
explicitly meant to deal with deep learning models. Architectural strategies
share parts of the network architecture between concepts, use transfer learning,
and focus on one concept at a time (as an SCL perspective requires). These
methods may boost the adaptation to new concepts since the model can reuse
part of the previous knowledge and combine it with the one acquired from the
current data. Moreover, the associated weights are usually frozen to remember
the old concepts. Gated Incremental Memories [19] propose a new version of
the CL architectural strategy of Progressive Neural Networks [20] to be applied
on top of an RNN model in a CL scenario. Continuous Progressive Neural
Networks [21] represent one of the first pioneering solutions that apply this
approach continuously to manage real concept drifts while avoiding forgetting.
Additionally, SML techniques can play a crucial role in detecting concept drifts
and identifying when to expand the architecture of the network.

Finally, as the M5 challenge findings highlight [16], combining statistical
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machine learning and deep learning techniques may produce better results in
handling TSA problems. Thus, an SCL setting could benefit from the collab-
oration of SML models (historically based on statistical machine learning) and
CL strategies (that usually rely on deep learning techniques).

3 Efficient adaptation of latent representations

The advent of large foundation models [22] incentivized the usage of high-
dimensional, hierarchical representations built during a pre-trainining phase and
later fine-tuned for a specific downstream task. In a dynamic world where infor-
mation is constantly changing, there are two key challenges to address: i) how to
add new knowledge on top of the existing representations and ii) how to update
existing representations.

Although related, i) requires building new representations while ii) requires
replacing existing representations with updated versions. The former case is
needed when the environment is subject to virtual drifts that introduce new
information without invalidating the previous one. This is usually the case in
CL scenarios, where new experiences introduce additional knowledge that the
solution must incorporate while retaining previous knowledge. In contrast, the
latter case is applicable when the environment is subject to real drifts that make
previous information obsolete. Therefore, the solution must actively enforce the
forgetting of obsolete information. A popular way of addressing both tasks in
real-word applications is to re-create all representations from scratch, usually
through a new pre-training phase with the new and old (but still relevant) data.
Unfortunately, this approach is not sustainable as it requires carrying out a
very expensive and time-consuming pre-training phase, even when only a small
amount of novel information is added.

As an alternative, CL approaches allow to incrementally update existing rep-
resentations through a continual pre-training phase [23], which only uses new
data. Continual pre-training requires much less time and resources than a pre-
training phase from scratch. However, by only considering new data, the update
phase must take care of preserving previous knowledge. Usually, continual pre-
training is performed by self-supervised methods, which have been proven to be
more resistant to forgetting than their supervised counterparts.
SCL offers the opportunity to add new knowledge from a stream of new data. In
fact, self-supervised approaches require a large amount of data and tend to un-
derperform when applied online. Ad-hoc variations of self-supervised approaches
designed for the online setting can mitigate this effect, as proposed by Cignoni
et al. in one of this special session’s papers [24].

A relevant application requiring the addition of new information is personal-
ization (of pre-trained models). Available models often lack the ability to quickly
adapt to a single user’s preferences and habits, departing from the knowledge
contained in their original version and specializing it to the user’s needs and
context. For example, it is very easy for a model to recognize a cup from a video
stream. It is more difficult to personalize the model’s behavior to distinguish be-
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tween the user’s cup and all other cups. A personalized model is asked to learn
this distinction for several objects and contexts, with only a few user-specific
examples to use during the training phase. SCL approaches can empower the
personalization of existing models by combining efficient techniques for updat-
ing latent representations in environments where data is scarce and part of a
temporally correlated stream like in videos.

In many cases, updating existing information is more common than adding
new one. In the presence of real drifts, previous information becomes obsolete
and must be replaced to avoid making incorrect predictions. One can update
new information by first removing outdated information and then adding the
corresponding updated representation. Forgetting of existing representations is
considered an issue in CL. This hides the assumption that most CL works focus
on virtual drifts, where previous information remains valid. Instead, unlearning
approaches [25] allow to selectively erase existing knowledge without affecting
other representations. This special session presents a work on continual learning,
which extends unlearning to erase information over time [26]. Other approaches
include model editing [27], with which the model predictions on specific facts
are targeted and switched. Scaling model editing to an SCL environment with
a stream of high-frequency data remains challenging [28].
Keeping any model, let alone a foundation model, up to date with the most
recent news and most relevant information requires taking care of both points
we discussed. Research is still in its infancy, proposing and exploring different
ways to advance in this task. However, we argue that any model deployed in the
real-world will have to cope with its non-stationarity and, ultimately, its time-
dependency in an efficient way. The re-training approach cannot scale when
billions of personalized models are deployed anywhere in the world. Information
that is crucial for one user may not be relevant at all for others. In fact, it
may be detrimental. Updates must be continual, based on a small set of data,
as well as energy- and time-efficient. Adjusting and personalizing the behavior
of predictive models and assistants will require SCL techniques able to satisfy
these requirements.

4 Benchmarks for SCL

SCL targets real-world environments where data comes in high-volume, high-
frequency, non-stationary streams. Fundamental to the development and assess-
ment of SCL approaches is the identification of datasets and benchmarks that
can be used by the research community. Here, we list existing attempts and
promising directions that encompass multiple domains: from satellite images to
natural language and videos, we show how SCL approaches can have a direct
impact on relevant real-world applications.

CLEAR [29] is one of the first benchmarks targeting gradual drifts connected
to the temporal evolution of visual concepts. The dataset includes both labelled
and unlabeled data. CLEAR can be directly used by SCL approaches along the
lines mentioned in Section 3: the unlabeled data constitutes the backbone of
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the continual pre-training phase, while the labeled data can be used to either
fine-tune the resulting model or to include specific information (e.g., through
continual model editing which requires labeled data). The dataset can also be
considered through the lenses of real drifts, as it continually updates the concepts
related to an object (e.g., a personal computer) over a large time span.

Similarly, Wild-Time [30] provides a benchmark focused on temporal distri-
bution shifts. Unlike other distribution shifts, temporal shifts have an inher-
ent structure given by timestamped metadata, which allows models to leverage
past trends to predict future variations. The benchmark includes five real-world
datasets covering domains such as drug discovery, patient prognosis, and news
classification, where temporal shifts significantly impact model performance.
Wild-Time evaluates a range of methods, including domain generalization, con-
tinual learning, self-supervised learning and ensemble learning, examining their
ability to generalize across time. It introduces two evaluation strategies: Eval-
Fix, which uses a fixed time split for straightforward benchmarking, and Eval-
Stream, a streaming evaluation for continual learning approaches. Experimen-
tal results highlight that existing methods struggle with temporal distribution
shifts, with an average performance drop of 20% from in-distribution to out-of-
distribution data, emphasizing the challenge of evolving real-world environments.

Managing temporal dependencies between sequential images is a critical chal-
lenge when dealing with object detection tasks. CLAD [31] could serve as a useful
benchmark in this context, particularly for autonomous driving applications. It
focuses on object classification and object detection tasks, where the data con-
sists of sequential snapshots captured over time. Another relevant dataset in this
context is KITTI [32], which captures 6 hours of real-world traffic scenarios using
various sensors, including stereo cameras and a 3D laser scanner. The dataset
provides synchronized, timestamped data with object labels in the form of 3D
tracklets, making it suitable for tasks like stereo vision and object detection.

CLOC [33] is a dataset of geolocalized, time-stamped images from various
locations around the world. The objective is to infer the geographical coordinates
of the input image. Interestingly, the authors cast the problem into an online
CL problem, which is strongly aligned with our SCL framework. CLOC can be
used out-of-the-box to assess the performance of SCL approaches. For example,
by employing drift detectors methods that can track the change in geographical
location to update the predictor.

EGO4D [34] is a large-scale dataset of several daily-life activity videos from
the egocentric views of different users. EGO4D provides an excellent foundation
for the personalization task already discussed in Section 3. SCL approaches,
taking into consideration the temporal correlation (Section 2) of video streams,
are perfectly apt to this task. Due to its resource-intensive character, video
processing in SCL will likely be one of the most challenging tasks to tackle, but
also one of the most impactful ones.

Natural language processing is another crucial test-bed for SCL. Firehose [35]
is a benchmark for personalized language models that includes tweets from mul-
tiple users over time. The objective is to develop user-specific language models
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that adapt to the users’ needs. TemporalWiki [36] is a dataset of time-stamped
Wikipedia/Wikidata pages that allows us to carefully monitor the amount of
knowledge added, removed or changed over time. As such, TemporalWiki is
an ideal candidate to assess the performance of SCL approaches in unlearning
outdated knowledge or in editing specific pieces of changed information.

Finally, this special session also introduces an SCL benchmark for land use
classification [37], which includes satellite images at a fine-grained resolution
and subject to drifts over time. Correctly classifying land use requires an under-
standing of both the spatial context and the temporal evolution of the observed
location under different environmental conditions. Predictive models deployed
directly on satellites may not access large computational resources, making this
use-case fit for several SCL applications.

5 Conclusion

SCL does not aim at blending CL and SML, such that one is absorbed into
the other. CL and SML still preserve their own objectives, which are worth
studying even in isolation. CL revealed the brittleness of learned representa-
tions in non-stationary environments, and is helping in building more robust
ones. SML designed several learning approaches that work with drifting data,
in environments with limited resources and tight time constraints. SCL works
at the intersection of such environments, in applications where models need to
learn latent representations and keep them up to date over time while being able
to respond quickly and adapt to new temporally correlated data.

Learning latent representations (mapping high-level, semantic concepts into
a shared high-dimensional space) is often a slower process than the predictive one
(mapping an input into the correct output), requiring gathering knowledge from
multiple sources and preserving its consistency. For this reason, SCL systems
may be required to act at different temporal resolutions, with one part of the
system (played by the SML algorithm) being very responsive at external stimuli
and providing predictions and decisions on-the-fly. The other part (played by
the CL algorithm) works at a slower pace and receives feedback from the fast
component to update its representations, which collectively form the shared
knowledge base of the entire SCL model. Even though this view only sketches
the nature of a possible SCL approach, we hope it can also provide guidance for
those researchers interested in pursuing this ambitious challenge.
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