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Abstract. Artificial Intelligence (AI) both in general and in its current
predominant version, mostly based on connectionist tenets, lives in the
paradox of aiming to reproduce and simulate the workings of an immensely
complex system, the biological brain, which are still to a large extent
unknown. This gives us latitude for some interesting domain interplay:
concepts from the cognitive sciences can be used to improve AI models,
while AI can be used in data science mode to analyze cognitive processes
in neuroscience, as well as brain pathologies from a medical standpoint.

1 Introduction

Artificial Intelligence (AI) both in general and in its current predominant ver-
sion, which is mostly based on connectionist tenets (that is, Machine Learning
(ML) and, more in particular Deep Learning (DL) in the form of large artificial
neural networks (ANN)) lives in the paradox of aiming to reproduce and simu-
late the workings of an immensely complex system, the biological brain, which
are still to a large extent unknown. The ongoing groundbreaking advances in
large language models (LLMs) with their mastery of human-like dialogue and
other Transformer-based models (such as the AlphaFold variants that led to the
recent concession of the Nobel Prize in Chemistry to Demis Hassabis and John
Jumper [1]) have reignited the debate about the feasibility of Artificial General
Intelligence (AGI) as an AI with human-level cognitive abilities.

The faith in the eventual advent of AGI should at the very least be tempered
by our limited knowledge of biological intelligence. The contrast is stark when
assessing the outcomes of recently finished neuroscience flagship efforts such as
the European Human Brain Project (HBP) [2],[3] and the US BRAIN Initiative
[4][5] and other similar efforts around the world [6]. The decade-long HBP
began in 2013 with the stated general objective of understanding the human
brain through computer simulation, from the molecular level all the way to the
operational systems level. It quickly run into managerial problems requiring
a complete overhaul [7]. Its overall goal was not achieved, although partial
impressive results included a full and accessible map of the brain: the Julich
Atlas [8].
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This paradoxical situation gives us latitude for some interesting scientific
domain interplay: on the one hand, specific and limited-on-the-scope concepts
from neuroscience and the cognitive sciences can be used as inspiration for the
design and improvement of different AI models, even if we do not mean to claim
their biological plausibility as in silico models of intelligence. On the other hand,
AI can be used in data science mode (and mostly using ML-based methods at the
core of analytical pipelines) to investigate cognitive processes in neuroscience,
as well as brain pathologies from a medical standpoint.

This brief tutorial paper reflects on all these issues, without attempting com-
pleteness, and collects the contributions to the ESANN 2025 special session on
Machine Learning and applied Artificial Intelligence in cognitive sciences and
psychology.

2 Cognitive science concepts as foundations of AI systems

The interplay between the developments in AI and cognitive neuroscience, often
mediated by the concept of computational neuroscience, is hardly ever fluid, as
exemplified by DL. As a connectionist apotheosis of sorts, you might expect it to
draw heavily on ideas of bio-plausibility as, for instance, Self-Organizing Maps
did from the eighties [9] (see some comments on this below). Instead, the litera-
ture on this issue is rather thin on the ground. Elements of the integration of DL
and Neuroscience were provided by Marblestone and co-workers [10], who work
with three hypotheses, namely that the biological brain operates by optimizing
diverse and dynamic cost functions; that cost functions associated to this op-
timization vary across brain regions; and that the brain utilizes pre-structured
architectures optimized for specific behavioral and computational tasks. Authors
claim that standard ML algorithms for optimization like backpropagation may
have, at least partially, some correspondences in biological brains and they stress
the importance of determining “whether and how brains implement these algo-
rithms”. Indeed, the bio-plausibility of backpropation has been a historically
contentious matter, but one that has of late been successfully defended [11].
The use of DL as a “framework of neuroscience” has recently been advocated
in [12], arguing that the same building blocks investigated for DL design: ob-
jective functions, learning rules and model architectures, would benefit Systems
Neuroscience Research.

Several cognitive science concepts have inspired the development of AI sys-
tems. Arguably, one of the most successful DL models available today in different
variations is the Transformer [13], and one of its key components is a mechanism
of attention, namely self-attention. Attention mechanisms (AM) in AI have been
investigated for over forty years and draw inspiration from biological AM [14],
instantiated, for instance, by visual attention mechanisms [15] in sensory-motor
loops, such as eye movements used to focus on the relevant part of an image
while disregarding irrelevant information. AM leverages the concept of rele-
vance by enabling the model to selectively concentrate on specific parts of the
input, thereby improving the effectiveness of task performance. Over the years,
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various types of AM inspired by the human visual system have been developed
and integrated into neural networks.

The self-attention mechanism has yielded impressive advances in applica-
tions such as computer vision [16],[17] and natural language processing [18], [19],
among other areas of application. Two prominent self-attention-based models,
namely BERT (Bidirectional Encoder Representations from Transformers) and
GPT (Generative Pre-trained Transformer) [20] implement different cognitive-
like approaches to solve NLP tasks. BERT follows a bidirectional design to
capture the context of a word in the sequence. BERT is trained as a masked
language modeling task and next-section prediction, so that they are optimal
for tasks related to a deep understanding of the text, such as text classification
and question answering [21]. Meanwhile, the GPT architecture is trained with
a one-directional design (left-to-right) and as a language modeling task to pre-
dict the next word in a sequence, therefore being optimal for text generation.
Transformer models based on self-attention are widely used for other generative
tasks such as images [22] and music [23], just to name a couple of areas.

Another important concept of cognitive science that has inspired computa-
tional models, such as associative memory, are the topographically structured
maps [24] in the cortex responsible for transmitting visual signals from the retina
to the brain. Inspired by the observation that associative areas are created
through self-organization from ongoing learning, much research has aimed to
emulate the mechanism of self-organization in neural networks through Hebbian
learning [25]. Some examples include early attempts corresponding to the “The-
ory of cerebellar cortex” [26], and the “Non holographic Associative Memory”
[27].

Visual processing in the human occipital lobe has been a constant source of
inspiration for connectionist models in ML. Half a century ago, Malsburg and
Willshaw emulated self-organization in the retina-cortex mapping through self-
organizing maps [28],[29]. Arguably, though, Kohonen’s Self-organizing Maps
(SOM) [9] are, by far, the most popular self-organizing ML architecture. They
incorporated a very useful feature, namely discrete topographically ordered pro-
jections of feature mappings (in ideas that can be traced back to Sun Ichi Amari’s
proposal of topographic organization of nerve fields [30]) learned through self-
organization. In the same way the visual cortex uses feature maps to capture
the information of orientation and spatial frequency from visual stimuli [31],
SOMs learn feature maps that preserve the topological characteristics of the
original input [32], resulting in a useful form of low-dimensional data represen-
tation in tasks of pattern recognition and data exploration for high-dimensional
datasets in unsupervised learning [33]. This low-dimensional representation is
a heuristic approach akin to that of probabilistic latent models such as Gener-
ative Topographic Mapping (GTM) [34] with discrete constrained latent space
representations that keep the model within the connectionist framework. SOM-
based large-scale simulations of the visual cortex such as the different variants
of LISSOM at the core of the Topographica software were created by Bednar,
Mikkulainen and co-workers from the 1990s [35].
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In the field of behavioral neuroscience, the human decision making process
has been described through the paradigm of Pavlovian conditioned behavior
[36]. From a computational point of view, conditioned behavior was formally
defined through the reinforcement learning (RL) normative framework [37]. In-
dividual’s decisions are oriented in a long term to maximize reward and minimize
punishments simultaneously [38]. RL is based on temporal difference (TD) learn-
ing, where the objective is the prediction of the future reward and a temporal
difference error, which is the difference between the predicted reward and the
actual reward. This would be the key reinforcement signal to guide learning,
which would have a parallel in the brain, the so-called temporal difference re-
ward prediction error. This links RL to the function of dopaminergic neurons
in the mammalian midbrain. Phasic firing of dopaminergic neurons may reflect
a reward prediction error [39]. According to [40], dopamine acts as a signal
for reward prediction errors and it can be utilized for forecasting and for ac-
tion learning in dopaminergic targets. Furthermore, physiological evidence for
dopamine-dependent (or even dopamine-gated) plasticity in the synapses be-
tween the cortex and the striatum has been found [41].

3 Advances in the application of ML to cognitive science
and brain pathologies

3.1 ML and cognitive science

Brain modeling is a thriving field of research at the crossroads of several disci-
plines, such as neuroscience, image and signal processing, and data science, with
the overall aim of creating a theoretical framework to understand the structure
and functioning of the brain. This tutorial does, by no means, attempt to cover
the many instances of ML use in cognitive science; instead, it aims to provide
an illustrative example of its potential. The Human Connectome Project (HCP)
[42], is a large-scale endeavor in cognitive science: a joint transnational effort to
accelerate advances in human neuroimaging toward the creation of a comprehen-
sive map of the human brain. The connectome is a graph-based representation
of the organization of the brain, where its specific regions, at different levels, are
treated as nodes and their multiple interactions as edges [43]. Different modali-
ties of non-invasive neuroimaging techniques, including structural Magnetic Res-
onance Imaging (MRI), resting-state functional MRI (rfMRI), task-evoked func-
tional MRI (tfMRI), and diffusion imaging (dMRI) allow acquiring the valuable
information about structural and functional features of the brain [44] that is re-
quired to build the graphs that are the foundations of such connectomes, either
at the anatomical or functional level [45].

Graph theory provides a framework to investigate the topological organi-
zation of these large-scale brain networks [46], in terms of their organization
in small-world networks [47], modular structure [48], or the presence of highly
connected nodes relevant for general intelligence [49].

Different types of manifold learning can also be used to efficiently analyze the
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high-dimensional connectivity matrices of brain models [50]. Neural manifold
learning exploits the advantages of modeling the spatio-temporal patterns of
neural activity in lower-dimensional subspaces of the original high-dimensional
space of the brain model, using dimensionality reduction techniques [51]. This
method has been extensively used in neuroscience research to gain insight into
the neural mechanisms involved in decision making [52], spatial navigation [53],
and movement execution [54].

3.2 ML for the analysis of brain pathologies

The data-based analysis of brain pathologies has long been an area of interest
for Computational Intelligence and ML. Its reach has been thoroughly reviewed
elsewhere [55]. For this reason, again, we aim here only to provide a few examples
of its relevance.

An area of obvious clinical interest is neuro-oncology: the analysis of can-
cers of the brain, often from data acquired with imaging techniques [56]. Brain
cancers are, in any case, only a sub-family of the many diseases and disorders
of the brain that have been analyzed using AI-based approaches, which also in-
clude, among others, Alzheimer’s disease, mild cognitive impairment, schizophre-
nia, depressive disorders, Parkinson’s disease (for a thorough review on ML for
diagnosis and prognosis of Parkinson’s disease using brain imaging, see [57]),
attention-deficit hyperactivity disorder, autism spectrum disease, epilepsy, mul-
tiple sclerosis, stroke, and traumatic brain injury [58]. A perspective on brain
diseases analysis centered on DL can be found in [59]. Going back to the analy-
sis of the human connectome discussed in the previous subsection, many studies
have investigated brain connectivity patterns related to mental disorders with
healthy and disease model states, such as for depression [60], schizophrenia [61],
or autism spectrum disorder [62], to name a few.

In the investigation of brain diseases from an ML-based modelling perspec-
tive, guidelines are required to bridge the gap between data and their prepro-
cessing and clinical routine [63]. For that to happen, a key issue is data harmo-
nization in multi-center studies [64].

4 Contributions to the ESANN 2025 special session

The 33th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN 2025) hosted a special session on
“Machine learning and applied Artificial Intelligence in cognitive sciences and
psychology” that included a total of eight studies. This section summarizes their
contributions in light of the previous sections.

Most of the contributions to the session addressed, directly or in a related
manner, the use of ML methods for data analysis as a way to investigate human
cognitive pathologies. They are, therefore, related to the contents of Section 3.

Ben Yahia et al.’s work [65] investigates the broad and complex Autism Spec-
trum Disorder, a neurodevelopmental pathology with a difficult diagnosis due to
significant individual variability and the absence of clearly described biomarkers.

299

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933. 
Available from http://www.i6doc.com/en/.  



Despite the fact that authors address diagnosis as a simplified binary classifi-
cation problem (occurrence or absence of the disorder), they introduce several
interesting elements in the analysis: First, multi-modal data are used, combining
fMRI information and phenotypic data, and including a feature selection pro-
cess. Second, and acknowledging the fact that relying on DL black-box methods
for classification would dramatically limit the interpretability of the results and,
consequently, their practical medical application, the study resorts to explainable
AI (xAI) to enhance model transparency in the form of SHAP [66] to provide
the type of insights into the model decision-making process that may assist a
medical expert.

Dislexia, yet another complex and not fully understood disorder related to
learning processes, is investigated in [67]. Acknowledging such complexity, this
work focuses on studying the relative impact of key attributes on its diagnosis. In
particular, it focuses on the demographic variables utilized in a computer-based
linguistic game for dislexia screening. The analysis “highlights the heterogeneity
present in these variables” and provides insights for the development of future
ML-based approaches to dislexia screening.

Dementia can be characterized as a syndrome that is often associated with
neurodegenerative diseases (often, for instance, with Alzheimer’s disease). It is
characterized by a global decline in cognitive abilities. Kumpik and colleagues
[68] undertake the complex task of analyzing unstructured conversations for the
early detection of dementia, which is required for palliative medical treatment.
This work explores “whether cross-domain (from semi-structured to unstruc-
tured) transfer learning improves dementia classification from conversational
speech”. A BERT-family model is fine-tuned using semi-structured narratives
for which contextual information was available, with further fine-tuning on nat-
uralistic conversations. Authors find that direct transfer from BERT to conver-
sations is more effective in improving generalization.

Although not directly an investigation about a cognitive pathology, the char-
acterization of sleep stages can be a door to the study of sleep disorders. Moctezuma
et al. [69] investigate sleep staging using Gradient Boosting. They do so without
the requirement of extensive computational resources or high density electroen-
cephalograms (EEG). A key to this study is the use of data transformations
using the Discrete Wavelet Transform and Power Spectral Density. This method
is shown to achieve competitive performance when compared to more complex
DL-based methods, even with fewer subjects in the training set and the use of
low-density EEG combined with electrooculograms.

Two of the contributions to the session make use of human cognition pro-
cesses as inspiration for ML developments and they are, consequently, aligned
with the scope of Section 2 of this tutorial.

The cognitive process, in this case a “functional emotion”, put forward by
Schöfer et al. [70] might seem unlikely at first. Authors propose a regulatory
role for boredom in AI models. Being an emotion increasingly recognized to play
a role in regulating human behavior and learning processes, this study transfers
the regulatory function of boredom into a control loop modeled with spiking
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neural networks. Preliminary evidence of the ability of the model to replicate
the regulatory mechanism of boredom is provided for synthetic data, thus setting
the bases for the future development of self-regulating systems based on spiking
neural networks “capable of entering a state of boredom”.

The work of Guiducci et al. [71] comes almost from the other side of the
spectrum of cognitive processes: authors use intrinsic motivation, related to the
psychological concept of curiosity, as a generator of agent-driven rewards for
exploratory behavior, thus aiming to enhance the biological plausibility of the
AI model. In this study, intrinsic motivation is added to the Elastic Decision
Transformer (EDT) framework for offline RL through an auxiliary intrinsic loss,
to “enhance representation learning without altering fixed reward signals”. The
validity of this curiosity-driven approach is illustrated using several locomotion
tasks from an open-source benchmark for offline RL.

Finally, this session includes a paper that does not quite fit neither the remit
of Section 2, nor that of Section 3. Marquise et al. [72] investigate human behav-
ior in a spatial navigation task involving locomotion and gaze dynamics of human
subjects that was reproduced in a virtual environment. The data generated in
such navigation task is used to train a CNN to reproduce human decisions, and
the CNN inner workings are revealed using several xAI methods. This leads to
the discovery of an specific oculomotor marker leading the behavioral strategy
used by human participants in the navigation task.
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