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Abstract. The convergence of network science and artificial intelligence
(AI) represents a rich area of research, where both fields can mutually
enhance one another. Network science offers a comprehensive framework to
analyze and model complex relationships, while machine learning (ML) and
AI provide powerful tools for recognizing patterns and making predictions
from large datasets. Combining these two disciplines can advance the
study of complex systems and lead to new innovations in data-driven
research. This tutorial paper reviews fundamental concepts of network
science, describes the current and promising research direction for bridging
network science and AI, and summarizes the contributions that have been
accepted for publication in the ESANN 2025 special session on the topic.

1 Introduction

Network science and artificial intelligence (AI) have emerged as two distinct yet
profoundly interconnected disciplines for modeling and understanding complex
systems. While network science focuses on unraveling the structural and dy-
namical patterns of interconnected entities constituting systems, AI leverages
computational frameworks to infer patterns, predict behaviors, and automate
decision-making. These fields are now converging on a few critical junctures,
offering unprecedented opportunities to address longstanding challenges in mod-
eling high-dimensional interactions, and emergent phenomena. In this paper,
we introduce a few promising research directions pointing out the convergence
of these two paradigms and summarize the contributions of a special session
organized by the authors at the 33th European Symposium on Artificial Neural
Networks, Computational Intelligence, and Machine Learning, showing advances
in the integration of network science methodologies and machine learning-based
solutions. Throughout this paper we argue that the synthesis of network science’s
perspective on connecting topology and system functions through robust and
principled tools with ML’s adaptive learning capabilities forms a transformative
paradigm for complexity research.

The convergence of network science and artificial intelligence presents signifi-
cant disciplinary challenges that must be addressed to fully realize the potential
of this integration [3]. From the network science side, network scientists often
deal with large, high-dimensional, and dynamic networks, but traditional algo-
rithms may struggle to scale effectively, leading to inefficiencies in analyzing
real-time data from complex systems. The need for scalable algorithms while
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maintaining accuracy is paramount. Additionally, conventional measurement
techniques may not be suitable for modern heterogeneous systems, which require
more nuanced approaches to analyze evolving feature-rich networks [16] including
heterogeneous node and edge types as well as multiple layers of interactions and
arbitrary feature vectors. The integration of AI into network science necessitates
effective data representation methods. Many AI techniques require numerical
input formats that may not align with the categorical or topological features
typical in network data [1]. Converting these features into suitable formats
without losing critical information poses a significant challenge, especially if we
need to preserve high-order interactions, essential for capturing the intricate
relationships within networks [2]. Recently, approaches accounting for multi-node
interactions, group dynamics, and higher-dimensional structures, have been pro-
posed. For instance, simplicial complex embeddings extend beyond simple graphs
by representing higher-order structures such as higher-dimensional simplices [31].
These embeddings capture the geometric and topological properties of multi-node
interactions, allowing for improved tasks, such as higher-order link prediction
and network reconstruction. Graph-based methods have also been extended to
incorporate high-order interactions. For instance, Higher-Order Graph Neural
Networks (HOGNNs) generalize traditional GNNs by aggregating information
not only from immediate neighbors but also from multi-hop neighborhoods [42].
Another notable approach involves motif-based embeddings, where recurring
patterns or substructures, i.e. network motifs, are explicitly embedded into
the representation learning process [39]. These methods leverage the structural
significance of motifs to better understand the functional and relational properties
of networks. Finally, processes occurring on networks frequently display nonlinear
dynamics and emergent behaviors that challenge the accuracy of traditional
modeling approaches. These systems, characterized by intricate interactions
and feedback loops, often exhibit behaviors that cannot be predicted by simply
extrapolating from the properties of individual components. Recent works have
emphasized the necessity of incorporating AI’s adaptive learning capabilities
to address these shortcomings. For example, graph neural networks (GNNs)
have demonstrated their effectiveness in modeling emergent phenomena in social
and biological networks by learning complex interaction patterns and capturing
nonlinear dependencies between network entities, enabling more accurate pre-
dictions of phenomena such as information diffusion [4] or protein interactions.
Furthermore, research utilizing AI-driven agent-based models is providing insights
into the emergence of collective behaviors in social media such as the formation of
communities and echo chambers, or the diffusion of possibly harmful content [34].

AI’s application to graph-based data confronts several pressing challenges,
notably data sparsity, augmentation, interpretability, and validation. Sparse
connectivity in many real-world graphs can inhibit model performance and
exacerbate difficulties in acquiring sufficiently large or labeled datasets. To
address this issue, graph augmentation techniques [47], such as selective edge
removal or node addition, have shown promise, yet a comprehensive framework
that preserves essential topological features is still lacking [27]. High-order
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message passing further complicates matters by demanding representations that
capture intricate multi-node interactions without losing critical local information.
Interpretability and statistical validation also remain key concerns, particularly
for temporal graphs [6]. Although post-hoc explanation methods and attention
mechanisms have been proposed to elucidate GNN decisions, they often fail
to account for evolving network structures. New validation methodologies are
similarly needed to assess the reliability of models over time. Here, network
science offers valuable insights: tools such as community detection and higher-
order interaction analyses [13] can enhance both interpretability and robustness.
For instance, pooling strategies that integrate community structures help reduce
network complexity while preserving essential information. By systematically
evaluating these approaches across diverse temporal graph tasks, researchers
can pave the way for more transparent and statistically sound graph-based AI
systems.

The scope of the paper encompasses recent advancements in interpretabil-
ity for temporal graph learning methods, causality-aware graph learning for
time series data, representation learning for rich network structures, and graph
representation learning aimed at influence maximization. Moreover, the paper
introduces the four contributions of the special session with a special focus on
interpretable machine-learning approaches, the usage of temporal regularizers
to enhance factorization-based temporal knowledge graph completion; hyper-
bolic representation learning methodologies for node classification, and novel
activation functions to create topology-aware neural networks. Collectively, these
contributions aim to show advances toward the integration of AI on graphs and
network science methodologies.

2 Bridging Network Science and AI

There are multiple areas where a strong interaction between network science and
AI is promising: network science supports the design and understanding of AI
methods, AI offers new tools to tackle problems in network science, or, vice versa.
This section presents key areas of interaction between network science and AI,
outlining current literature and promising directions for future research.

2.1 Interpretability of temporal graph learning methods

Temporal Graph Learning (TGL) is a fast-growing field that aims to learn,
predict, and understand evolving networks. In recent years, several machine-
learning-based solutions have been proposed for forecasting links and node
properties on temporal networks, based on common tools such as graph neural
networks (GNNs), transformers, or temporal random walks [17, 24, 9]. Temporal
Graph Benchmark (TGB)1 - a widely adopted collection of benchmarks for
machine learning on temporal networks - shows that most of these solutions
exhibit high variability in the performance over different datasets and tasks.

1https://tgb.complexdatalab.com/, February 2025
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Due to the challenging interpretability of deep learning models, the underlying
rationales behind this behavior remain largely opaque. In this context, temporal
network theory, network science metrics, and temporal graph mining tools can
be leveraged to enhance the interpretability of TGL models. For instance, two
works [40, 11] analyze the temporal edge re-occurrence in the TGB datasets,
highlighting that deep learning models may vary their performance due to the
level of re-occurrence/novelty of the edges in the datasets, depending on their
memorization or inductive reasoning capabilities. Dileo et al. [8] tested well-
known network science heuristics for link prediction on TGB. Results show
that simple heuristics can reach comparable results with some state-of-the-art
techniques and, thanks to their interpretability, give insights into the network
being studied, such as the importance of distinguishing link structural roles
over time. In the context of explainability techniques for temporal GNNs, Chen
et al. [6] proposes a new metric to evaluate the cohesive level of the explanations,
based on the temporal proximity of adjacent events, highlighting that most of the
models fail to leverage such temporal motifs. Through these examples, it becomes
evident that integrating network science principles into AI development can shed
light on the inner workings of TGL models. Future research should focus on
developing dedicated explainability techniques tailored to temporal graph learning
models. Moreover, a key direction is to integrate insights and domain knowledge
from network science and temporal graph theory into the design of neural
models, for instance, by biasing node and edge representations or integrating
temporal motifs and structural constraints to enhance both interpretability and
predictive performance. Conversely, advancing the interpretability of temporal
graph learning models can also benefit network science research. Compared to
traditional shallow embeddings or engineered feature vectors, temporal node
embeddings derived from deep learning models may provide richer information on
the evolving behavior of nodes, helping to detect distribution shifts and abrupt
variations caused by shocking events and mirroring their effect in the learned
representation.

2.2 Causality-Aware Deep Learning for Temporal Graph Data

Over the past ten years, the network science community has intensively studied
time series data on graphs that can be modeled as temporal graphs or tempo-
ral networks [15]. Apart from aspects like bursty activity patterns, temporal
correlations in the activation sequence of edges that influence time-respecting
paths [18] have been identified as one important aspect that influences the causal
topology of temporal graphs, i.e. which nodes can influence each other based on
the arrow of time. In a nutshell, in a temporal graph with two time-stamped
edges (a, b; t) and (b, c; t′) occurring instantaneously at time stamps t and t′,
node a can only causally influence node c via a time-respecting path through b
iff t < t′, i.e. iff the edge (a, b) occurs before edge (b, c). Conversely, due to the
arrow of time, nodes a and c cannot causally influence each other if the temporal
ordering of the two edges is reversed. Several studies have shown that, due to
the presence of temporal correlations in the sequential ordering of edges and the
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directionality of the arrow of time, real-world temporal graphs exhibit complex
causal topologies that considerably change the evolution of dynamical processes
like diffusion, epidemic spreading or percolation, community structures, or the
centrality of nodes [37, 35, 22, 36]. Despite these findings, this important class
of patterns in temporal graph data is often neglected by recent deep learning
architectures for temporal graphs, which often aggregate time-stamped edges
within batches [24]. These architectures allow us to model patterns in evolving
graph representations that are learned in an end-to-end fashion. However, they
typically discard information on the microscopic temporal ordering of edges that
constitutes the causal topology of temporal graphs and thus influences dynamical
processes, node centralities, and community structures. Addressing this gap,
recent works at the intersection of deep learning and network science have shown
how higher-order graph representations originally developed in network science
[20] can be integrated with neural message passing architectures to facilitate
prediction tasks in temporal graphs [33, 13]. However, much remains to be
explored to further develop causality-aware deep learning methods for temporal
graph data.

2.3 Representation learning for rich network structures

When designing AI methods for network science, a major challenge is to develop
methods that can properly account for network models that may go beyond
classical topologies by integrating more information into the network. Depending
on the specific task, feature-rich network models [16] may include heterogeneous
node or edge types, multiple layers, and arbitrary attribute vectors associated
with nodes and/or edges. In these cases, representation learning methods based
on GNN architectures are required to explicitly consider this broader context
while producing embedded representations and performing optimization for a
specific task at hand. Among the models that extend classic topologies, a
widely used one is that of multilayer networks [19], which can model intra-layer
and inter-layer relations, different layer characteristics, as well as node features.
Zangari et al. [46] propose a GNN framework for representation learning and
semi-supervised classification in multilayer networks. The proposed framework
is devised to be as flexible as possible with respect to specific instances of
multilayer networks since it can take into account an arbitrary number of layers
and intra-layer and inter-layer connections between nodes, as well as the presence
of side information (i.e., attribute vectors associated to the entities, with possible
partial knowledge over the entity set). This represents a major improvement to
other approaches dealing with multi-relational networks, such as GrAMME [38],
that can only take into account multiplex topologies, e.g., where arbitrary inter-
layer connections are not allowed, but only coupling edges among different
instances of a same entity. However, real-world systems may not only include
several heterogeneous interacting entities but also be inherently dynamic, with
relations and entity sets that continuously evolve. Intending to propose a tool
capable of dealing with such scenarios, Martirano et al. [26] proposed DyHANE
(Dynamic Heterogeneous Attributed Network Embedding), a framework that
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exploits the Graph Continual Learning (GCL) paradigm for a data-incremental
multi-class node classification task on Heterogeneous Information Networks
(HINs). DyHANE identifies a representative sample of multi-typed nodes as
training set and updates the parameters of a GNN module, to generate up-to-date
representations for all nodes in the network. The main idea is to avoid completely
re-training the model when only minor changes affect the network, and to reduce
the risk of catastrophic forgetting [48], by extending strategies like experience
replay and generative replay [44, 45] to the HIN case. These strategies are mainly
based on the ability to store a representative subset of past data or of synthetic
prototypes in a memory buffer, to consolidate acquired knowledge about existing
patterns during the dynamic evolution of the network.

2.4 Graph representation learning for influence maximization

Identifying influential spreaders—individuals capable of effectively disseminating
information—is essential for deepening our understanding of spreading dynamics
in social systems [25]. The problem lies at the heart of numerous real-world
applications, including computational epidemiology, viral marketing, media po-
larization, and misinformation detection. In a particular instance of the problem,
known as influence maximization, the goal is to find the optimal subset of k nodes
that maximize the influence spread under a stochastic information diffusion model
that simulates how influence propagates over the graph (e.g., the independent
cascade model). The problem has been extensively studied from a combinatorial
optimization perspective, with a primary emphasis on addressing time complexity
challenges. With the recent advances in graph machine learning, the research
community started investigating how representation learning techniques can
be leveraged to address the influence learning and maximization problems. A
particular challenge here is how real diffusion cascades (e.g., retweets in X) can be
utilized in the process, avoiding overfitting due to the large number of parameters
(i.e., proportional to the number of edges) [12] as well as assumptions imposed
by the diffusion model [4]. In this direction, Panagopoulos et al. [29] introduced
IMINFECTOR, an influence maximization framework devoid of diffusion models
that relies on representations learned from real information cascades. The model
consists of a multi-task neural network that simultaneously learns embeddings
for nodes initiating cascades (influencer vectors) and those participating in them
(susceptible vectors) while also predicting the cascade size. These embedding vec-
tors encode diffusion probabilities among nodes, allowing a greedy approximation
algorithm to be employed with theoretical guarantees. To further improve expres-
siveness, Ling et al. [23] introduced DeepIM, a model that relies on GNNs to learn
representations of seed sets and, subsequently, to define a seed selection policy
to maximize the influence spread. GLIE [30] employs a similar methodology,
resulting in an inductive model trained on small graphs capable of generalizing
on significantly larger test graphs. More recently, these approaches have been
extended to learn the underlying diffusion model through cellular sheaf GNNs,
including the DeepSN model [14].

Let us mention here that this line of work on influence maximization is
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part of a broader effort to leverage graph learning for addressing combinatorial
optimization problems [5]. Similar approaches have been applied to other well-
known network science tasks, such as graph clustering and community detection,
to optimize objectives like modularity [43] or graph cuts [10]. This further
demonstrates the potential of AI-driven solutions, aiming to balance efficiency,
generalization, and graph structure expressiveness.

3 Special Session’s Contributions

This year’s special session comprises original contributions ranging on a set of
diverse topics on the intersection between network science and artificial intelli-
gence:

• Lange-Geisler et al. [21] propose an interpretable machine-learning approach
to assess the reliability of network-structured systems. Their central idea is
to use a classification scheme to identify prototype vectors in feature space
representing the (un-)reliability levels. For this, they apply the Generalized
Matrix Relevance Learning Vector Quantization (GMLVQ).

• Dileo et al. [7] systematically analyzeseveral choices of temporal regularizers
to enhance the performance of factorization-based temporal knowledge
graph completion methods. Their work shows that by carefully tuning
simple tensor factorization models, they can reach comparable performance
with other competitors, enabling several applications useful in network
science and graph mining, such as producing more interpretable results or
scaling to very large graphs, without substantial sacrifices in performance.

• Pogány et al. [32] propose a methodology based on hyperbolic representation
learning for node classification in protein-protein interaction (PPI) networks.
Each PPI network is associated with a specific tissue, which is organized
in a hierarchical tree-like structure. The method leverages this structure
to allow multiple representations of the same protein in adjacent layers
of the hierarchy to share similar features. Specifically, the author extends
OhmNet [49] to work in a hyperbolic space, leveraging the Lorentz model.
Results show, on average, an increase in performance compared to the
Euclidean counterpart.

• Snopov et al. [41] propose novel activation functions that enhance the
ability of neural networks to manipulate data topology during training.
Their work investigates whether non-standard activation functions can be
used as the basis of more topology-aware neural networks. The work builds
on previous research demonstrating that neural networks elaborate data for
classification by progressive simplification of the topology of the data [28].

4 Conclusion

In conclusion, this paper highlights the synergistic relationship between network
science and AI, showcasing how their integration can address complex challenges
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in data analysis and modeling. By outlining promising research directions, and
summarizing contributions presented at the ESANN 2025 special session, we aim
to highlight the potential of combining network science and AI. The findings
underscore the need for further exploration of these hybrid approaches to enhance
interpretability, validation, and overall performance across various application
domains.
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