
Open-Vocabulary Robotic Object Manipulation
using Foundation Models
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Abstract. Classical vision-language-action models are limited by unidi-
rectional communication, hindering natural human-robot interaction. The
recent CrossT5 embeds an efficient vision action pathway into an LLM,
but lacks visual generalization, restricting actions to objects seen during
training. We introduce OWL×T5, which integrates the OWLv2 object
detection model into CrossT5 to enable robot actions on unseen objects.
OWL×T5 is trained on a simulated dataset using the NICO humanoid
robot and evaluated on the new CLAEO dataset featuring interactions
with unseen objects. Results show that OWL×T5 achieves zero-shot
object recognition for robotic manipulation, while efficiently integrating
vision-language-action capabilities.

1 Introduction

In recent years, artificial intelligence (AI) has emerged as a key methodology
in the field of human-robot interaction (HRI). Classical vision-language-action
(VLA) models primarily rely on unidirectional communication, limiting their
capacity to interact naturally with humans. Recent crossmodal VLA models
aim to address this limitation by also generating language. One such model,
CrossT5 [1], successfully leverages a pre-trained large language model (LLM)
for language-based tasks. The so-called late fusion architecture allows CrossT5
to be trained on a very limited dataset, enabling it to learn action execution
while retaining the original language capabilities of the T5 LLM [2].

One of its limitations is a lack of visual generalization, which restricts it
to performing actions only on objects seen during training. To address this
limitation, this research proposes the OWL×T5 model, integrating the OWLv2
open-vocabulary object detection model [3] into the CrossT5 architecture as a vi-
sion capable foundation model alongside T5 to enable zero-shot generalization of
robotic actions to novel objects. We train OWL×T5 on a small dataset generated
in a simulated environment using the NICO humanoid robot [4]. For evaluation,
we introduce a new simulated dataset, Crossmodal Language-Action on Every-
day Objects (CLAEO), which features interactions with everyday objects in
simulation (see Fig. 1). Results indicate that the model successfully generalizes
actions to previously unseen objects while retaining the original language-based
capabilities and data efficiency of CrossT5.

∗The research was supported by the DFG under the Crossmodal Learning (TRR-169)
project and by the Horizon Europe project TERAIS under Grant agreement 101079338.
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Fig. 1: A successful action execution of OWL×T5 on novel objects in simulation.
The language input for this example was push ball.

2 Related Work

Recent research into crossmodal vision-language-action models often leverages
foundation models, such as LLMs and open-vocabulary object detection mod-
els. Cross-modal models include LaMI, ELMiRA, RT-2, and CrossT5. LaMI
[5] enhances human-robot interaction by guiding robots with a set of atomic
actions generated through high-level language inputs, coordinating movements
with speech to create multimodal expressions. Moving beyond traditional de-
signs, it adopts an example-driven approach for HRI. ELMiRA [6] is a modular
framework that combines LLMs with domain-specific models, enabling robots
to understand commands, describe scenes, and manipulate objects. Integrating
components like vision-language models, object detection, and spatial control,
ELMiRA achieves robust interaction in tabletop scenarios, showcasing its open-
ended HRI capabilities. CrossT5 [1], the focus of this research, builds a multi-
modal architecture within the T5 language model to facilitate action-language
translation. By inserting a Crossmodal Transformer between the encoder and
decoder of T5, CrossT5 achieves efficient training, strong language understand-
ing, and effective robotic control. The RT-2 model [7] leverages vision-language
models trained on Internet-scale data and fine-tunes them with robotic data,
encoding actions as text tokens to support generalization to novel tasks.

We enhance CrossT5 because it offers a promising approach by integrating
the T5 LLM in a unique way. Rather than transforming vision and action inputs
into tokens fed into the LLM, CrossT5 employs a “late fusion” approach: the T5
model is split into encoder and decoder components, with the hidden representa-
tion fed into a Crossmodal Transformer alongside other inputs. This late fusion
approach strikes a balance by combining the strengths of vision and language
features, requiring significantly less training data and fine-tuning compared to
“early fusion” models like RT-2. Additionally, unlike modular approaches such
as ELMiRA and LaMI, which rely on a predefined action library where each ac-
tion must be manually added, CrossT5 can theoretically be trained to generalize
actions. This, provided there is sufficient action data, makes it adaptable and
efficient.
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Fig. 2: OWL×T5 architecture in the execute case. The j vectors represent joint
angle values from NICO’s arms. {B,L, S} denote {Bounding boxes, Labels,
confidence Scores} from OWLv2, and (xmid, ymid) represents the position of the
target object. Conc. denotes concatenation, FC is a fully connected layer, and
Pos. is the position calculation.

3 OWL×T5: Late Fusion with Object Detection

The CrossT5 model exhibits several limitations that restrict its versatility in
complex human-robot interaction scenarios. The model object interaction ca-
pabilities are restricted to objects it has encountered during training. It was
trained using colored cubes, constraining the model’s ability to operate in more
diverse environments with a wider range of objects. To lift this restriction we
introduce the open vocabulary object detection model OWLv2 (base patch16)
into the architecture as seen in Fig. 2. The T5 model (T5 small) is split into
its encoder and decoder components. The output of the encoder lenc ∈ R512 is
fed into a crossmodal Transformer. The visual input is a coordinate (xmid, ymid)
of the target object, which is generated by OWLv2 using both visual and lan-
guage input. The visual coordinates and the action inputs ((j1 . . . jM ), ji ∈
R10, sequence length M ≤ 85) are concatenated and then fed into the action
encoder, which is a Long Short-Term Memory (LSTM) network [8]. The output
of the action encoder aenc ∈ R512 is also fed into the crossmodal Transformer.
The output of the Transformer h ∈ R512 is then passed through a fully connected
(FC) layer before being fed into the T5 decoder, which produces the language
output lout. The mean (over the temporal dimension) of this output hmean,
along with the action inputs, is fed into the action decoder (also an LSTM),
which generates the action output aout.

The model is trained to perform in four distinct modes: translate, execute,
describe and repeat action. In translate mode, it translates the language input
from English into German (one of the capabilities of the T5 model). In execute
mode, the model performs actions described by the text prompts. The describe
mode lets the model generate language descriptions of the actions. In repeat
action mode the model’s goal is to reproduce a given action.

For training we utilize the mixed loss from Caesar et al. [1]. This approach
uses the Mean Squared Error (MSE) between the predicted joint sequence and
the target joint sequence for the action output aout, the cross-entropy loss be-
tween the predicted and target tokens for the language output lout, except in
translate mode where the MSE between the hidden vector h, produced by the
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(a) Eval on cubes (CLANT)
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(b) Eval on novel objects (CLAEO)

Fig. 3: Comparison of the actions in the execute mode between CrossT5 and
OWL×T5 on two datasets, cubes (CLANT) and novel objects (CLAEO). An
execution is considered perfect if the correct object is moved in the intended
direction beyond a specified threshold and no other object was moved. It is
considered successful if all criteria are met except the threshold distance. An
action is deemed a failure if one or more criteria are unmet.

Crossmodal Transformer, and a target hidden vector produced by T5 is used.
We train OWL×T5 on the CLANT (Crossmodal Language-Action and Nat-

ural Translation) dataset, introduced by Caesar et al. [1]. This dataset consists
of 1440 action execution samples, with 1080 samples (75%) used for training
and 360 samples (25%) for testing. Each sample in the action dataset includes a
sequence of images, corresponding joint values, and a brief textual description of
an action performed by the humanoid NICO robot. NICO interacts with three
colored cubes positioned on a table in front of it, within a simulated environment
generated using CoppeliaSim [9]. The robot utilizes either its left or right arm
to perform one of 12 actions to move one of the cubes, with the image sequence
captured by a camera mounted in NICO’s eyes. Depending on the sample, se-
quences of 40, 60, or 85 images and joint angles of both arms are recorded. In
total, the data set consists of 12 · 120 = 1440 samples (12 different actions and
120 possibilities to arrange 6 different coloured cubes on 3 positions). Those
sequences are used for training the execute, describe and repeat action mode.
For translate mode the Tilde RAPID 2019 German-to-English dataset from the
ACL 2019 Conference [10] was integrated into CLANT. It comprises of sentence
pairs derived from European Commission press releases. The first 1440 samples
from RAPID 2019 were sufficient to re-establish the original capabilities of the
split T5. We train the model with the Adam optimizer, for 10000 epochs, with
a learning rate of 10−5 and a batch size of 64 .
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4 Experiments in Simulation with NICO

We assess the performance of CrossT5 and OWL×T5 on all four modes: execute,
translate, repeat action, and describe. The execute mode is further evaluated in
simulation on the cubes seen during training (CLANT) and on novel objects to
determine whether the new model effectively transfers its learned capabilities
and demonstrates zero-shot learning on unseen objects. Designed to mirror
the actions found in CLANT, we created a new evaluation dataset, CLAEO,
applying these actions to a set of novel objects which are visually distinct from
the original colored cubes. These novel objects were selected from RLBench and
were not present in our training data [11]: a mustard bottle, a can, a mug, a white
chess piece, a ball, and an empty wine bottle. Due to instabilities in simulation,
we let them retain the simple physical properties of the cubes.

Fig. 3 shows the results of the execution evaluation for both the baseline
(CrossT5) and OWL×T5 across two different object categories: cubes and novel
objects. The results indicate that while the CrossT5 model performs slightly
better on the familiar cubes, the OWL×T5 model demonstrates improved gen-
eralization to novel objects. Specifically, OWL×T5 shows a marked improve-
ment in successfully executing actions on novel objects, where CrossT5 fails to
generalize.

Table 1 assesses the language production quality of both models using BLEU2
scores. Despite being trained on language translation less extensively, our model
surprisingly outperforms Cross-T5 in the translation task, achieving a higher
BLEU2 score. Important to note is that for translate mode we are not comparing
its output to the dataset’s target translations, but directly to the output of
the original T5 model, because OWL×T5 is trained to reproduce the language
encodings from the T5 model. Thus its translation performance will inherently
be limited by that of T5 (T5: BLEU2 of 42.12% on CLANT vs. ours: 40.42%).
Our model also generalizes to novel objects in describe mode, unlike CrossT5.

We also evaluate the action output for repeat action mode using the Normal-
ized Root-Mean Squared Error. CrossT5 achieves 0.25% on CLANT and 6.88%
on CLAEO. OWL×T5 achieves 0.37% on CLANT and 0.63% on CLAEO. These
results reaffirm that our model can transfer the learnt tasks to new objects and
CrossT5 cannot. Overall, our evaluation shows a zero-shot generalization across
all 4 tasks.

CLANT CLAEO

CrossT5 OWL×T5 CrossT5 OWL×T5

translate 86.75% 91.68% — —
describe 100.00% 100.00% 0.00% 100.00%

Table 1: Language output accuracy (BLEU2) of CrossT5 and OWL×T5 in
translate and describe mode on both datasets. Since CLAEO has the same
translation samples as CLANT, the corresponding fields are left empty.
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5 Conclusion

We have introduced OWL×T5, a novel crossmodal VLA architecture. OWL×T5
integrates the OWLv2 open-vocabulary object detection model into the T5 LLM,
enabling the generalization of actions to previously unseen objects in a zero-shot
manner. Evaluation with the CLAEO dataset demonstrates OWL×T5’s strong
performance, particularly in handling new objects, underscoring its enhanced
generalization potential for real-world applications. This research contributes to
human-robot interaction by supporting more natural and adaptable interactions
without requiring extensive training data.
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