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Abstract. We propose a bias detection and mitigating scheme for data
in the context of classification tasks based on learning vector quantizers
(LVQ) as classifier. For this purpose generalized LVQ endowed with an
advanced matrix adaptation scheme is used for bias detection. The bias
removal from data is realized applying a nullspace data projection using
the adjusted matrix. The usefulness of the approach is demonstrated and
illustrated in terms of two real world datasets.

1 Introduction
The analysis of data by machine learning (ML) methods is an ongoing topic of
increasing importance. One crucial aspect is that data or ML-systems contain
and reflect biases. This relates directly to fairness in ML-based support systems
when they are involved in processes regarding humans, concerning personality
characteristics, career decisions, etc. Frequently, it is assumed or claimed
that the data are biased without specifying the kind of bias. Furthermore,
explainable/interpretable AI is assumed to contribute to more fairness [6].

Handling these problems is challenging and has to be tackled by modern
approaches. At least two main processing directions can be identified: (a)
modification of ML-models to deal with/ignore the bias, or (b) to remove the
bias from the data. Both directions have advantages and disadvantages: While
ignoring-bias-models leave data unchanged but usually add penalties if hidden
bias information is used, the removal ansatzes modify the data in such a way
that the bias information is no longer present in the data, neither directly nor
by implicit correlations. In this contribution, we focus on the latter strategy.
In particular we consider an interpretable and robust classifier approach – the
Generalized Learning Vector Quantization (GLVQ [10]) method and show how
it is used to solve the task. We compare our approach with a recently proposed
fairness variant of GLVQ (FairGLVQ [11]), which favors the first bias-strategy.
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The paper is structured as follows: First, we reconsider the bias-problem and
describe the challenge in a more formal way. Thereafter, we briefly recapitulate
variants of GLVQ as well as FairGLVQ followed by the explanation of our
proposed approach. Numerical results demonstrate the ability of the method
and concluding remarks give further perspectives.

2 The Bias Problem and Fairness
Inherent characteristic data structures or patterns are essential for succesful
application of ML-methods to solve data analysis and processing tasks. Without
any structural information, successful machine learning becomes impossible.
Bias is usually understood as an unwanted distortion of the data in which some
aspects of a dataset are given more weight and/or representation than others and
which is related in social context to fairness. A skewed outcome, low accuracy
levels, and analytical errors result from a dataset that is biased and therefore
does not represent a model’s use case accurately. Thus, a final ML-model can
be affected by a specific bias due to the training with the biased data.

Now we suppose a hypothesis H0 (b) that a specific bias b is contained
implicitly in the data X ⊂ Rn (suspected bias), influencing a model response
r (x) for a given task. Hence, the assumption is that the bias information b (x)
of a sample can be extracted from r (x) with higher precision than by random
guessing. If the bias extraction only results in a random guess, we refer to the
response model as fair with respect to the hypothetic / suspected bias.

Here, we will concentrate on classification models C (P) depending on the
model parameters P, i.e. the response is a class label c (x|C (P)) ∈ C =
{1, . . . , C} for a presented sample x. Accordingly, the tasks are: (I) detection
of an expected bias b in the data with respect to a classification problem; (II)
If bias is detected, remove this bias from the data such that the classification
decision cannot benefit from this information. The second task is to search for
a transformation Tb of the data such that the resulting data Xtrans = Tb (X ) is
unbiased with respect to the considered hypothesis H0 (b) in the context of the
specified target classification.

We suggest the following procedure, referred to as the bias-detection-
mitigation-scheme (BDMS):

1. classify the original data using a model Corig (P) w.r.t. the given main
classification task (MCT), yielding the accuracy accorig

2. classify the data using a model Cb (P), trained w.r.t. the pre-defined specific
bias b, yielding the accuracy accb and compare it with random guessing:

a) if accb is not significantly different from random guessing - STOP and
accept the classifier and result from step 1

b) if accb is better than random guessing - continue with 3.
3. mitigate/remove the bias from the data by the transformation Tb (X ) and

(re-)train a model Ctrans (P) from cleaned data Xtrans w.r.t. the given
target classification task, yielding the accuracy acctrans

4. quantify the bias influence on the class prediction:
a) calculate the fraction of data samples that are classified differently by

the retrained model
b) compare accorig with acctrans
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If the performances accorig and acctrans deviate significantly, there is evidence
that the supposed (and detected) bias influences the classification task, otherwise
we can conclude that the detected bias has not led to an overvalued apparent
performance of the target classification.

3 A GLVQ-approach for Data Bias-Removing
3.1 Matrix GLVQ for Classification – GMLVQ
A Generalized Matrix Relevance LVQ (GMLVQ) system generates a class
decision for data X ⊂ Rn based on class dependent prototypes W =
{p1, . . . ,pM} ⊂ Rn with class labels c (pk) ∈ C such that each class is
represented by at least one prototype. A data sample x ∈ X is classified by
the nearest prototype rule

x 7→ c (p∗) , p∗ = argminpk∈W∗⊆W [dΩ (x,pk)] (1)

where dΩ (x,pk) = (x− pk)
⊤
Λ (x− pk) (2)

is a quadratic form with W∗ = W parameterized by Λ = Ω⊤Ω with Ω ∈ Rm×n

and m ≤ n [3]. For training data T = {(xj , c (xj)) ∈ X × C, j = 1, . . . , N} a loss
function approximating the misclassification error in GMLVQ is

LGMLVQ (T ,P) =
N∑
j=1

sgd
(
dΩ (xj ,p

+)− dΩ (xj ,p
−)

dΩ (xj ,p+) + dΩ (xj ,p−)

)
, sgd (z) =

1

1 + exp (−z)

where p+ and p− are the class dependent best matching correct/incorrect
prototypes for xj according (1) with W∗ = W+

j = {pk ∈ W|c (pk) = c (xj)}
and W∗ = W−

j = {pk ∈ W|c (pk) ̸= c (xj)}, respectively. Hence, the GMLVQ
model is determined by the parameter set P = {W,Ω}. Optimization takes
place as stochastic gradient descent learning with respect to all parameters.
Important to note that GMLVQ constitutes a non-linear classifier if at least
three prototypes are contained in W. Further, the optimized relevance matrix
Λ = Ω⊤Ω reflects the correlation between the data attributes contributing to
a correct classification and, hence, is frequently also denoted as classification
correlation matrix (CCM). The choice Λ = I without Ω-optimization yields
standard GLVQ.

Recently, Iterated Relevance Matrix Analysis (IRMA) was proposed [8],
which recursively determines a linear subspace representing the classification
specific information of the considered datasets using GMLVQ. IRMA makes use
of the representation Λ =

∑n
l=1 λ

(0)
l v

(0)
l v

(0)⊤
l where v

(0)
l are the eigenvectors

of Λ and λ
(0)
1 ≥ λ

(0)
2 ≥ . . . ≥ λ

(0)
n ⪆ 0 the corresponding eigenvalues. For

binary classification problems, Λ is typically dominated by a single leading
eigenvector [2]. We define the projector P(0) = I − v

(0)
1 v

(0)⊤
1 . Now, we

can perform another GMLVQ training using the quadratic form (2) for the
projected data x

(1)
j = P(0)x

(0)
j with x

(0)
j = xj , i.e. we apply GMLVQ to the

nullspace of Ω(0) =

√
λ
(0)
1 v

(0)
1 v

(0)⊤
1 . Applying this scheme iteratively we obtain
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a sequence of vectors v
(i)
1 where each v

(i)
1 is orthogonal to the vectors v

(î)
1 with

î = 0, . . . , i−1. In each iteration step i we obtain v
(i)
1 , P(i) = I−

∑i−1
k=0 v

(k)
1 v

(k)⊤
1

and Ω(i) =

√
λ
(i)
1 v

(i)
1 v

(i)⊤
1 . The corresponding subspace

VK = span
{
v
(0)
1 ,v

(1)
1 , . . . ,v

(K)
1

}
with associated projections x

(i)
j =x⊤

j ·v
(i)
1 (3)

approximately covers all relevant data information regarding the classification
task for sufficiently large K ≤ n. Thus, NK = Rn \ VK is the nullspace of the

projector P(K) with the null-space projector P
(K)
0 =

∑K
i=1

√
λ
(i)
1 v

(i)
1 v

(i)⊤
1 . In

consequence, the projected data x̂j = P
(K)
0 ·xj do not contain any further useful

specific information for the class discrimination. As explained in [8], this scheme
can easily be extended to multiple-class scenarios.

3.2 Application of IRMA-scheme to Remove Bias Information in
GLVQ-Classification

In the following, we suppose bias classes cb (x) ∈ Cb = {1b, . . . , Cb} of the data
corresponding to a bias classification task – BCT, whereas the MCT task is to
discriminate the data into classes C = {1, . . . , C}. Further, we suppose available
training data Tb = {(xj , c (xj) , cb (xj)) ∈ X × C × Cb, j = 1, . . . , N}. Finally, we
suspect a bias hypothesis H0 (b): The data X ⊂ Rn may contain information
regarding the bias type b influencing a main classification task (MCT). An
approved hypothesis H0 (b) indicates that the bias contributes to the MCT.

To validate H0 (b) by means of GMLVQ as the classifier in use, we
follow the scheme proposed in Sect. 2: First, a GMLVQ with prototypes
W = {p1, . . . ,pM} ⊂ Rn is trained for the MCT using the training
sample pairs (xj , c (xj)) yielding predictions c0 (xk) for test data Ttest =
{xk ∈ Rn, k = 1, . . . , Ntest}. In the second step, a GMLVQ followed by the
IRMA-scheme is applied to the BCT generating the projector P(K) with the
corresponding nullspace-projector P

(K)
0 identified as the data transformation

Tb (X ) to mitigate/remove the bias as explained in sec. 2. The last step is to
train a new GMLVQ for the MCT with the same parameter setting as for the
GLVQ in the first step but using the nullspace-projected training sample pairs(
P

(K)
0 · xj , c (xj)

)
∈ Xtrans×C and determine the predictions c1

(
P

(K)
0 · xk

)
for

the test data.
If the number Nb of data xk ∈ Ttest with c0 (xk) ̸= c1

(
P

(K)
0 · xk

)
leads

to a bias-influence-ratio (BIR) rb = Nb/Ntest ≪ 1 we can conclude that the
hypothesis H0 (b) is not supported by the data and the opposite hypothesis
H1 (b) should be preferred, i.e. the suspected bias is not validated.

Note that the bias removal realized by the projector P
(K)
0 is only a linear

operation and, hence, strong non-linear bias would not be removed completely.
Yet, in high-dimensional data, linear approximations of non-linear manifolds
frequently give sufficient quality [7] whereas in low-dimensional settings the
deviations usually become more substantial. The GLVQ obtained for the
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dataset BIR rb accorig accb acctrans
SPD 0.558 63.7 75.2 60.7
PIMA 0.146 76.7 80.9 71.2

Table 1: Results of BDMS using the FA(IR)2MA-GLVQ. The bias-influence
ratios (BIR) rb ∈ [0, 1] reflect the number of differently evaluated samples after
bias mitigation. The balanced accuracy values (acc) are given in %.

projected data still yields a non-linear classifier if more than two prototypes are
used. We refer to this approach as FAIRness-IRMA-based GLVQ – FA(IR)2MA-
GLVQ.

4 Numerical Experiments
SPD – Student Performance Dataset The student performance dataset
examines student performance in secondary education at two Portuguese schools
in two subjects: Portuguese and Math, here we consider only the former. The
attributes include student grades as well as demographic, social, and school-
related features collected by the schools. More details about the features and
further background information can be found in [5]. The data set consists of
649 data points for the Portuguese subject. The number of features is 30 and
the categorical features are preprocessed by one hot-encoding. Moreover, for the
target we chose the final grade (numeric from 0 to 20), which we grouped into
the three classes: failed (< 10), mediocre (10−13), good to very good (14−20).
Nevertheless, the data set is very unbalanced. As mentioned in [4] the grades
could be biased by gender, as the information is given as a feature in the data
set. Accordingly, the suspected bias b is gender.
PIMA – Pima Indians Diabetes Dataset The second dataset originates from the
National Institute of Diabetes and Digestive and Kidney Diseases provided by [1].
The primary purpose is to predict whether a patient suffers from diabetes using
specific diagnostic measurements provided in the data. The dataset contains
768 samples of 7 medical predictor variables like body mass index, insulin level,
glucose concentration, etc. for female patients who are all at least 21 years old
and are of Pima Indian descent. It is assumed that the age could be influencing
the diabetes diagnostics, i.e. age could be a bias. The provided age information
for the samples is grouped into young age (< 31) and older (≥ 31). Thus, here
the suspected bias b is age.

Numerical Results
Both datasets were z-score normalized. All results we report are obtained by
5-fold cross validation. We applied the BDMS using the FA(IR)2MA-GLVQ
introduced above for both datasets with exactly the same parameters. The
results are presented in Tab. 4. As expected, both datasets suffer from the
suspected bias (non-vanishing rb-ratios), i.e. the bias hypothesis is validated
by the data: SPD is heavily biased regarding gender whereas PIMA is slightly
biased w.r.t. age. Interestingly, the overall accuracy is not affected to the same
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degree. The reason for this behavior could be that the MCT is challenging and
bias mitigation does not influence the performance as much as expected.

5 Concluding Remarks
In this paper we have shown that GMLVQ together with the IRMA procedure
for data related class information extraction can be used to successfully mitigate
suspected bias in the data regarding the given classification task.

We remark that a similar GMLVQ-based null-space projection approach was
suggested in [12] and in [13] for leveling the influence of different data sources in
federated learning. Further, an iterated nullspace evaluation for bias detection
was also proposed for text analysis in context of linear classifiers [9], while
GMLVQ constitutes a non-linear classifier if the overall number of prototypes is
greater than two.
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