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Abstract. We present a new approach for the assessment of the reliabil-
ity of coherent systems by using a prototype-based classification method.
More specifically, reliability levels for consecutive k-out-of-n systems, which
serve as a model for a particular type of networks, are classified using
Generalized Matrix Learning Vector Quantization, which provides useful
information about the impact of the input probabilities on the classified
reliability levels. Our approach is not limited to reliability analysis, but
is generally applicable for estimating the probability of the union of any
finite family of events, based on their individual and pairwise probabilities.

1 Introduction

In our modern world, we are surrounded by highly reliable technical systems
made up of individual components that are prone to failure. Examples include
electrical power systems, nuclear power plants, pipeline networks, transporta-
tion networks as well as computer and communication networks. Evaluation
(and optimization) of the reliability of such systems is an important task in the
early design process. The goal is to assess the reliability of the system as the
probability that the system is operating, given that its individual components
are subject to random and independent failure with known failure probabilities.
There are a variety of algorithms for computing or estimating the reliability of
such systems, see e.g., [1]. However, in the general case, exact algorithms are
highly inefficient, as the problem of computing certain network reliability mea-
sures is NP-hard (in fact, #P-complete [1]). For this reason, simulation methods
or lower and upper bounds are frequently used for estimating reliability [4], but,
due to the inherent complexity of the problem, these methods often produce
poor results with high computational costs.

Machine learning approaches to system and network reliability assessment
have hardly been investigated to date and are usually combined with traditional
methods. For instance, in [6], support vector machines (SVM) are combined with
optimization methods to estimate the failure probability, where the objective is
an efficient and accurate reliability assessment by classifying system states. In
[11], graph neural networks (GNN) are used to predict the survival signature of
a network, from which reliability estimates are obtained by applying the law of
total probability. These existing approaches do not provide interpretable results,
which are useful for optimizing the network in order to increase its reliability.
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Our approach differs basically from existing approaches in that it provides
interpretable estimates for the reliability or unreliability in terms of so-called
reliability or unreliability levels. Furthermore, it does not require to classify the
states or to predict the survival signature, which can be computationally in-
tensive. Our central idea is to use a classification scheme to identify prototype
vectors in feature space representing the (un-)reliability levels. For this, we ap-
ply the Generalized Matriz Relevance Learning Vector Quantization (GMLVQ)
algorithm, which, due to its robustness and its ability to produce interpretable
results, has proved useful in many practical classification problems [9, 12].

We emphasize that our approach is not limited to reliability analysis, but
is generally applicable to estimating the probability of any union of finitely
many events, based on their individual and pairwise probabilities. This general
problem is usually addressed by applying the inclusion-exclusion principle and
related Bonferroni inequalities and has various applications in statistics [5].

Our paper is organized as follows: In Section 2 we review the basic notion
of a coherent system from reliability theory, which is general enough to model a
wide variety of systems and networks encountered in practice. As a special case,
we introduce the consecutive k-out-of-n systems, which are used in the later
learning procedure. We proceed by explaining our basic idea, which, as stated
above, has applications outside reliability analysis. Section 3 provides a concise
overview of the fundamental principles of GMLVQ. The datasets created from
consecutive k-out-of-n systems, along with our results, are detailed in Section 4.
In Section 5 we summarize our findings and give an outlook on future research.

2 System Reliability Analysis with Machine Learning

A coherent system is a pair X = (E, ¢), where E is a finite set and ¢ is a mapping
from the power set of F to {0,1} such that ¢(#) =0, ¢(F) =1and X CY =
d(X) < ¢(Y) for any X, Y C E. We call E and ¢ the component set and the
structure function of X, respectively. It is assumed that each component e € E
is randomly and independently in one of two states, operating or failing, with
probabilities p. and g. = 1 —pe, respectively. The set S of operating components
of ¥ is the state of X. X is said to be operating if ¢(S) = 1, and failing if $(S) = 0.
For p = (pe)eecr, the reliability of ¥, written as Rely(p), is the probability that
¥ is operating. Analogously, for q = (gc)eck, the unreliability of ¥, written
Relx(q), is the probability that ¥ is failing. Obviously, Rels(p) = 1 — Relx(q).

A particular case of a coherent system X = (F, ¢) is that of a consecutive
k-out-of-n success resp. failure system, where E = {1,...,n} and ¢(X) = 1
resp. ¢(X) = 0 if and only if X contains k consecutive components; that is,
the system operates resp. fails whenever k consecutive components operate resp.
fail. Figure 1a shows a consecutive 9-out-of-18-failure system, which serves as an
exemplary model for a communication network with perfectly reliable terminal
nodes s and t (green), unreliable inner nodes labelled from 1 to 18 (red), and
perfectly reliable edges. The network is in an operating state if and only if there
is a path of operating nodes between s and t. In our example network, this is
the case if and only if no nine consecutively labelled nodes simultaneously fail.
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(a) consecutive failure network (b) learned relevance matrix A

Figure 1: A consecutive 9-out-of-18 failure network with terminal nodes (green)
and unreliable inner nodes (red) and the learned relevance matrix of D ¢/

In general, for any coherent system X, its (un-)reliability can be computed
from the minpaths resp. mincuts of 3, which is any C-minimal X C FE such that
@(X) =1resp. ¢(E\ X) =0. Thus,

Rely(p) = Prob(A; U---UA,) resp. Relg(q) = Prob(A;U---UA,) (1)

where A; denotes the event that the i-th pathset resp. cutset of ¥ (assuming
they are numbered consecutively) exclusively consists of operating resp. failing
components (i = 1,...,n). To evaluate the right-hand sides in Eq. (1), the
inclusion-exclusion principle (the sieve formula) is commonly used:

Prob(4;U---UA4,) = i (—1)* Z Prob (ﬂ Ai> .

k=1 IC{1,...,n} iel
|I|=k

This, however, involves a summation over 2" terms resulting from the joint
probabilities of up to n events. If nothing is known about the independence of the
events, it is very difficult or even impossible to determine the joint probabilities
of higher order. Even then, the time complexity would be exponential due to
the enormous number of terms in the formula. One way of dealing with these
problems is to truncate the sum to k < r, which gives lower bounds if 7 is even,
and upper bounds if 7 is odd. These so-called Bonferroni bounds (and variants
thereof) are often too inaccurate and can take values outside the unit interval,
making them useless in this case. Furthermore, it is still necessary to determine
the probability of intersections of higher order, which, depending on the specific
system or network, can be an enormous hurdle or even be impossible.

This is where our machine learning approach comes into play: Instead of eval-
uating or computing bounds on the probability of a union, we apply a machine
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learning approach to learn these probabilities from the probabilities of intersec-
tions of up to two events for different problem instances, that is, by varying the
component operation (resp. failure) probabilities and/or the type of system or
network under consideration. This is justified as the impact of the mutual prob-
abilities of three or more events, especially in the application domain of system
and network reliability, is rather negligible, and since most reliability measures
exhibit a similar qualitative behavior, which can be seen, for example, in the
S-shaped curve in the case of equal operation or failure probabilities [1].
The basic setup for our machine learning approach are data of the form

(t57) = (t1y s by troy e e oy bo1; 7) € [0, 1] FD/2 5 [0, 1], (2)

where t; = Prob(4;) (1 <i <n), t;; = Prob(4;NA4;) (1 <i<j<n),and
7 = Prob(A;U---UA,) is to be learned. To avoid misleading permutations, the
first n probabilities in each data vector are assumed to be given in ascending
order and the pairwise probabilities are assumed to be arranged consistently.

3 Standard GMLVQ

Generalized Matriz Learning Vector Quantization (GMLVQ) is an is an exten-
sion of Learning Vector Quantization (LVQ) [8, 10]. It improves classification
performance through adaptive metric learning by optimizing prototype place-
ment in the feature space to minimize classification errors. More precisely,
let ¥ = {x; € R", j=1,...,m} be the set of training data with class labels
c(x)eC={1,...,C}and W= {w, € R", k=1,...,1} the set of prototypes,
each associated with a predefined class ¢(w) € C = {1,...,C}. The classifica-
tion decision is realized via the winner-takes-all rule w* = argminy d (x, wg),
where d is a dissimilarity measure. Further, we consider the cost function
n _

Borvg (X, W) = Sen f (1) with ju= 0)dbow) oy gy,
where p represents the classifier function, f is a monotonically increasing func-
tion, and d(x,w™) and d(x,w™) are the dissimilarities to the closest proto-
types with matching and non-matching labels, respectively. Training is achieved
through gradient-based optimization, maximizing classification margin and en-
suring robustness while preserving interpretability [3, 9].

A special feature of GMLVQ is the incorporation of relevance learning by re-
placing the standard dissimilarity measure with d(x, w) = (x —wy,) "A(x — wy,)
where A € R™ " is the relevance matrix [10]. The diagonal elements of the
learned matrix A can be interpreted as the representation of the feature rele-
vance by emphasizing individual feature dimensions in the obtained classifica-
tion, denoted as classification relevance profile, while the off-diagonal elements
capture possible interdependencies between the features. An additional inter-
pretation is provided by the classification influence profile, given by the vector
(Zj |Aij|)i=1,...n, which for ¢ = 1,...,n represents the importance of the i-
th data feature in connection with all other features for the separation of the
dataset [7]. To summarize, this adaptive metric learning can improve the classi-
fication accuracy while offering the possibility of valuable interpretability [2].

14



ESANN 2025 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

Dic Dy ¢ Dac Dy cr
acCoam | 0.965 (£0.0125) | 0.895 (£0.0075) | 0.9575 (£0.005) | 0.895 (40.0066)
ACCtest 0.9267 (£0.0058) 0.853 (+0.0058) 0.9567 (£0.0208) 0.8633 (£0.0058)

Table 1: Averaged training and test accuracies and their standard deviations

4 Experimental Design and Results

Following our basic setup in Section 2 we constructed two data sets Dy and Dy
each containing N = 500 samples of the form (t; 7) as in Eq. (2) where for D; the
entries in t are the individual and pairwise success probabilities of the minpaths
of a consecutive 9-out-of-18 success system, whereas for Dy these are the individ-
ual and pairwise failure probabilities of the mincuts of a consecutive 9-out-of-18
failure system as illustrated by the network in Figure la. These individual and
pairwise probabilities result from the success resp. failure probabilities of the
components of the system and their independence, where the success probabili-
ties were chosen uniformly at random from [0.8,1], and the failure probabilities
from [0.4,0.7]. The selection of these intervals is sensible since consecutive k-
out-of-n systems are of practical use mainly in case of highly reliable resp. highly
unreliable components. Since highly unreliable components are rarely used, we
have opted for a medium failure probability in this case.

For each (t;7) in Eq. (2) we consider t as a training vector with label ¢(t)
resulting from 7 = Relg(p) resp. 7 = Relg(q) with p,q as in Section 2, where
7 is computed according to [4, Theorem 5.2]. Special quantiles ¢, of 7 are used
to define the (un-)reliability levels, and thus the labels ¢ (t). More precisely, we
consider the classes C = {¢g.25, co.75} and C' = {¢g.25, co.5, €o.75 }, representing the
(un-)reliability levels in terms of low and high, respectively low, middle and high.
In this way, from D; and D, we derive the data sets D; ¢, Di¢/, Dac and Dy ¢/,
to each of which standard GMLVQ is applied with 3-fold cross-validation for
classification and with one prototype per class. The resulting averaged accuracies
for training and testing, acCiain resp. acCCiest, and their standard deviations are
given in Table 1, which shows that even for a complex system the (un-)reliability
levels can be successfully predicted using only partial information on the mutual
probabilities associated with the minpaths resp. mincuts of the system, which
is a significant advantage over alternative methods. In addition, the learned
relevance matrix A, shown in Figure 1b, provides a valuable interpretation of
the interdependencies between the minpaths resp. mincuts of the system.

5 Conclusion

We demonstrated that the individual and pairwise success resp. failure proba-
bilities of a coherent system’s minpaths resp. mincuts can be used to effectively
predict its (un-)reliability levels. The method described may be used for larger
systems and offers interpretability through the learned relevance matrix. This
provides insight into the behavior of the system, which can be useful for reli-
ability optimization, for example. Further applications in other areas may be
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addressed in the future as our method is not restricted to reliability analysis
and can be used to generically estimate the probability of a union of any finite
family of events based on their individual and pairwise intersection probabili-
ties. Such estimates are useful in some applications of statistics, e.g. in multiple
comparison procedures, recognition of seasonal trends and outlier detection [5].
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