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Abstract. This work integrates Monadic Second-Order (MSO) logic into
Spatio-Temporal Heterogeneous Hypergraphs (STHH) to advance Neuro-
Symbolic AI. By bridging higher-ordered symbolic logic with neural com-
putations, STHH offers a novel framework for knowledge representation
and learning. Evaluations on a custom agricultural dataset show that the
proposed STHH outperforms state-of-the-art hypergraph models across
F1-score, accuracy, and AUC metrics. Despite challenges such as limited
standardized datasets, this study underscores the potential of integrating
higher-ordered symbolic logic into neural systems to achieve robust and
interpretable AI.

1 Introduction

Artificial intelligence (AI) aims to emulate human cognitive abilities, yet bridg-
ing the interpretability of symbolic logic with the adaptability of neural networks
remains a core challenge. Neuro-Symbolic AI seeks to address this by enabling
systems that are both interpretable and flexible [1, 2]. Despite progress, effec-
tively embedding expressive logic within neural paradigms is still underexplored.

Monadic Second-Order (MSO) logic, with its ability to quantify over both
individual elements and sets, offers a level of expressiveness beyond First-Order
Logic (FOL) [3]. This makes it particularly suitable for capturing complex re-
lationships such as graph connectivity, Hamiltonian paths, and k-colorability.
Additionally, MSO’s decidability on finite structures provides a computational
framework for advanced reasoning [4]. However, embedding MSO logic into neu-
ral models presents challenges, especially in representing such logic efficiently
while preserving its learning power.

Spatio-temporal heterogeneous hypergraphs (STHH) extend traditional knowl-
edge graphs by incorporating vertices and hyperedges of varying types, as well as
spatial and temporal properties. In this paper, we propose a structured represen-
tation that works with neural computation by mapping MSO logic into STHH,
leveraging hypergraph convolutional networks tailored for directed structures
that fill in gaps in interpretation and expression. Our contributions are three-
fold: a) We encode MSO rules within the STHH framework, enabling complex
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reasoning in domains with spatio-temporal characteristics. b) We redefine spec-
tral convolution for directed hypergraphs and integrate domain knowledge with
data-driven learning via attention mechanisms. c) Using a custom dataset from
the agricultural domain, we demonstrate the model’s superiority over state-of-
the-art methods in link prediction tasks.

2 Background and Related Works

Knowledge graphs (KGs) have emerged as a fundamental tool for structured
knowledge representation, encoding relationships between entities in a graph
structure. Current KG approaches can be broadly classified into symbolic logic-
based methods and embedding-based techniques (KGEs).

Several methods have been proposed to incorporate logical rules (first-order)
into the learning process of graph embeddings. For example, PTransE and its
variants [5] integrate path rules into the embedding learning process to better
capture relational paths in KGs. Similarly, methods like KALE and RUGE
[6] use logical rules to regularize the embeddings. Inductive reasoning models,
such as ILR-IR [7], incorporate manually defined logical rules like symmetry and
transitivity into temporal knowledge graphs. Additionally, LogicENN and other
methods [8] focusing on the joint learning of structure and rules have shown
that integrating logical rules enhances the performance of KGEs by preserving
graph structure and improving explainability. Furthermore, SimRE [9] leverages
contrastive learning with soft logical rules to refine KGEs. However, most ex-
isting methods are constrained by the expressiveness of FOL. The necessity of
Monadic Second-Order logic in this context lies in its expressive power, which is
not possible with First-Order logic.

Hypergraphs, which generalize graphs by allowing hyperedges to connect
multiple vertices, provide a flexible framework for modeling multi-entity re-
lationships. Recent advancements in Hypergraph Neural Networks (HGNNs)
like [10, 11, 12, 13, 14] and LHP [15] leverage spectral convolution and atten-
tion mechanisms to capture higher-order dependencies. However, these methods
primarily focus on undirected hypergraphs; additionally, they do not integrate
higher-order logical reasoning.

3 Encoding MSO Logic in STHH

A Spatio-Temporal Heterogeneous Hypergraph (STHH) is formally defined as:

GSTHH = (V,E, τv, τe,∆,Ω, ξ, ρ),

where V is the set of vertices and E ⊆ 2V is the set of hyperedges. τv and τe
represent vertex and hyperedge types, respectively. The mappings ∆ : V → τv
and Ω : E → τe assign types to vertices and hyperedges. The function ξ :
V → Rd assigns spatial coordinates to vertices, where d represents the spatial
dimension. The temporal function ρ : (V ∪E) → T assigns temporal attributes,
where T is a temporal domain. Vertices Vi ⊆ V that share the same type cj ,
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spatial position pk ∈ Rd, and temporal property tl ∈ T are connected via a
hyperedge. Formally, ∀v ∈ Vi, ∆(v) = cj , ξ(v) = pk, ρ(v) = tl.

An MSO formula Φ operates on vertices, hyperedges, and their sets. MSO
consists of: a) Predicates- A(x), where x represents a single vertex or hyperedge,
and A is a unary predicate. b) Logical connectives- ¬,∨,∧,→, representing
negation, disjunction, conjunction, and implication. c) Quantifiers- Existential
(∃) and universal (∀) quantification over elements (v ∈ V ) and sets (Vi ⊆ V ).
To represent the MSO in an STHH, a mapping can be established between the
elements, sets, and relations of the MSO and the vertices, subsets of vertices,
and hyperedges of STHH, respectively as shown in Figure 1.
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Fig. 1: Visual comparison of a traditional Knowledge Graph and its transforma-
tion into a Spatio-Temporal Heterogeneous Hypergraph (STHH) encoded with
MSO logic.

Let 𭟋 = V ∪ E denote the universe of discourse. A unary predicate A(x)
in MSO maps an element x ∈ 𭟋 to a vertex v ∈ V . For x ∈ 𭟋 satisfying
A(x): ∀x ∈ 𭟋, A(x) =⇒ ∃v ∈ V, ∆(v) = A, ξ(v) = ξ(x), ρ(v) = ρ(x),
where ∆(v) assigns the vertex type, ξ(v) denotes its spatial coordinates and
ρ(v) its temporal attribute. The function f : 𭟋 → V maps elements in 𭟋 to
vertices in V , preserving their properties. For a unary second-order predicate
X(x), representing a set X ⊆ 𭟋, the corresponding subset of vertices in V is
VX ⊆ V . For any x ∈ X: ∀x ∈ X, X(x) =⇒ ∃v ∈ VX , ∆(v) = X, ξ(v) =
ξ(X), ρ(v) = ρ(X). Hyperedges e ∈ E connect subsets of vertices associated
with X: ∀X ⊆ 𭟋,∃e ∈ E,∀x ∈ X, f(x) ∈ e, Ω(e) = X.

Logical connectives in MSO are assigned to vertex and edge operations in
STHH, and second-order quantification extends existential (e.g. ∃vΦ) and uni-
versal (eg. ∀vΦ) quantification to subsets VX ⊆ V , ensuring that their associ-
ated hyperedges satisfy Φ (MSO formula). An n-ary relation R(x1, x2, . . . , xn)
in MSO maps to a hyperedge e ∈ E in STHH. For R: ∀{x1, x2, . . . , xn} ⊆
𭟋, R(x1, x2, . . . , xn) =⇒ ∃e ∈ E, {f(x1), f(x2), . . . , f(xn)} ⊆ e, Ω(e) = R.
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Here, e captures the relationship R among the connected vertices.
The Hypergraph Convolutional Network (HCN) [16] operates directly on

STHH, leveraging their non-Euclidean structure. Unlike traditional convolu-
tional neural networks, HCNs handle complex relationships by utilizing the in-
cidence matrix H ∈ R|V |×|E| and corresponding degree matrices (DV ,DE). The
convolution layer updates node embeddings as:

X(l+1) = σ
(
D−1/2

V HWD−1
E H⊤D−1/2

V X(l)Θ(l)
)
, where X(l) is the node embed-

ding matrix at layer l, Θ(l) is the learnable weight matrix, and σ is the acti-
vation function. To capture directional relationships, we adapt the Magnetic
Laplacian framework [17] with Hermitian matrices for eigenvalue decomposi-
tion. The resulting spectral convolution integrates complex-valued edge features
as X = ζf(Λ)ζ†X, where ζ and Λ are eigenvectors and eigenvalues of the Her-
mitian matrix, respectively, and f(Λ) is modeled using Chebyshev polynomials
for computational efficiency.

Our methodology combines domain expert-driven and data-driven hyper-
graphs, denoted STHHX and STHHD, respectively. Domain knowledge en-
codes MSO logic into STHHX , while STHHD derives from spatio-temporal
data. These hypergraphs are processed using HCNs with independent convolu-

tion layers as: X
(l+1)
X = σ

(
D−1/2

X,V HXWXD−1
X,EH⊤

XD−1/2
X,V X

(l)
X Θ

(l)
X

)
, and similarly

for XD. Attention mechanisms combine the outputs as: ΨV = αXXX +αDXD,
where αX and αD are learned attention weights. The embeddings ΨV are passed
through dense layers and a softmax activation for link prediction. We employ a
DistMult-based loss function for optimizing relational scores.

4 Experimental Evaluation

The proposed methodology was evaluated on a curated spatio-temporal dataset
in an agricultural context representing complex multi-entity relationships. Our
experiments aim to demonstrate the efficacy of encoding MSO logic into Spatio-
Temporal Heterogeneous Hypergraphs (STHH) for link prediction tasks.

The domain expert-driven hypergraph (STHHX) encodes 50 distinct MSO
rules within the agricultural context. These rules encapsulate relationships like
crop rotation, pest proximity, irrigation patterns, and spatio-temporal depen-
dencies. For example, the rule ∃A,B : ∀x ∈ A(crop(x,maize, yearX) ∧ ∀y ∈
B(crop(y, soybean, yearX+1))) maps crop rotations across years into hyperedges
where vertices represent fields. The first-order variable x is mapped to vertex
Vi with type ‘field’ and attribute ‘maize, yearX ’. The set A is represented by
a subset of vertices V with the type ‘field’. The hyperedge connects vertices in
set A with vertices in set B representing ‘soybean, yearX+1’.

The data-driven hypergraph (STHHD) was derived from the “FEW-Meter”
project dataset [18]. The hypergraph statistics are shown in Table 1.

The dataset was split into 60% training, 20% validation, and 20% testing; the
hidden layer size was set to 32, weight decay to 5e−4, and the Adam optimizer
with a learning rate of 0.0001 was employed. Table 2 provides a comparison
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Table 1: Statistics of the STHHD hypergraph.
Statistic Value
Number of Hyperedges 340
Number of Vertices 72
Average Degree of Vertices 15.69
Average Size of Hyperedges 3.32
Maximum Hyperedge Size 35
Minimum Hyperedge Size 1
Total Overlapping Hyperedge Pairs 3732

(ablation study) of our proposed STHH model with several state-of-the-art hy-
pergraph neural network models with respect to the metrics: F1-score, Area
Under the Curve (AUC), and Accuracy (ACC).

Table 2: Ablation Study: Impact of MSO Domain Rules Across Different Models
Model Setup F1-Score ACC AUC

HGNN [10]
Without Rules 0.501 0.629 0.665
With Rules 0.532 0.662 0.693

HGNN+ [11]
Without Rules 0.672 0.689 0.707
With Rules 0.698 0.713 0.722

H-GCN [12]
Without Rules 0.301 0.557 0.626
With Rules 0.326 0.593 0.662

HNHN [13]
Without Rules 0.753 0.853 0.890
With Rules 0.778 0.876 0.912

U-GNN [14]
Without Rules 0.763 0.816 0.887
With Rules 0.791 0.844 0.913

LHP [15]
Without Rules 0.786 0.867 0.923
With Rules 0.807 0.889 0.941

STHH (Proposed)
Without Rules 0.824 0.892 0.927
With Rules 0.856 0.922 0.951

5 Conclusion

This work demonstrates the integration of Monadic Second-Order logic with
Neuro-Symbolic systems through the construction of a Spatio-Temporal Hetero-
geneous Hypergraph. Our approach outperforms state-of-the-art models, achiev-
ing an F1-Score of 0.856, Accuracy of 0.922, and AUC of 0.951 in link prediction
tasks. Despite these advancements, the lack of standardized datasets and toolkits
for Neuro-Symbolic integration remains a challenge. Future efforts could focus
on extensions beyond MSO logic; also, techniques such as low-rank approxima-
tions for spectral filtering, adaptive pruning of hyperedges, or quantization-based
neural architectures could improve efficiency.
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