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Abstract. Concept drift refers to the change of data distributions over
time. While drift poses a challenge for learning models, requiring their
continual adaption, it is also relevant in system monitoring to detect mal-
functions, system failures, and unexpected behavior. In the latter case,
the robust and reliable detection of drifts is imperative. This work stud-
ies the shortcomings of commonly used drift detection schemes. We show
that they are prone to adversarial attacks, i.e., streams with undetected
drift. In particular, we give necessary and sufficient conditions for their
existence, provide methods for their construction, and demonstrate this
behavior in experiments.

1 Introduction

Data from the real world is often subject to continuous changes known as con-
cept drift [1, 2, 3]. Such can be caused by seasonal changes, changed demands,
aging of sensors, etc. Concept drift not only poses a problem for maintaining
high performance in learning models [2, 3] but also plays a crucial role in sys-
tem monitoring [1]. In the latter case, the detection of concept drift is crucial
as it enables the detection of anomalous behavior. Examples include machine
malfunctions or failures, network security, environmental changes, and critical
infrastructures. This can be done by detecting (unexpected) drifts [4, 1, 5]. In
these contexts, the ability to robustly detect drift is essential.

In addition to problems such as noise and sampling error, which challenge
all statistical methods, drift detection faces a special kind of difficulty when
the drift follows certain patterns that evade detection. In this work, we study
those specific drifts that we will refer to as “drift adversarials”. Similar to ad-
versarial attacks in classification, that exploit model properties to force wrong
decisions [6], drift adversarials exploit weaknesses in the detection methods, and
thus allow significant concept drift to occur without triggering alarms posing
major issues for monitoring systems. Besides the construction of drift adversar-
ials, the presented theory also provides tools to check whether a specific drift
detector is provably correct.

This paper is structured as follows: First (Section 2) we recall the definition
of concept drift and define the two setups for which we will construct our adver-
sarials. In Section 3, we construct drift adversarials that exploit which data is
used for the analysis. Here, we mainly focus on two window approaches. In the
last part (Section 4) we perform a numerical evaluation of our considerations
and conclude the work (Section 5).
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Algorithm 1 Two Window Drift Detector (without memory management)

1: procedure DriftDetection((xi)
n
i=1 data stream, θ detection threshold)

2: for (W1,W2) ∈ W(n) do ▷ iterate over all considered window pairs
3: p← Test({xi | i ∈W1}, {xi | i ∈W2}) ▷ Test drift between W1 and W2

4: if p < θ then
5: Alert drift
6: end if
7: end for
8: end procedure

2 Concept Drift and Drift Detection

Most machine learning research focuses on the batch setup where one considers a
fixed data set as i.i.d. random variables X1, . . . , Xn following some distribution
D on the data space X . However, in many scenarios, data is obtained as a stream
over time and is thus prone to potential changes of the underlying distribution,
a phenomenon known as concept drift [1, 3]. In such finite sample setup, drift
is typically defined in a sample-wise sense, that is two samples not having the
same distribution, i.e., ∃i, j : PXi

̸= PXj
[3]. Drift detection refers to the task of

deciding whether or not the stream is affected by drift. One issue of this setup is
that one cannot estimate the distribution PXi the single sample Xi follows [1].

To analyze this task theoretically, we consider an extension building on dis-
tribution processes [1] describing the limiting case. We model a time T indexed
family of probability measures Dt on X together with an observation probabil-
ity PT on T [1]. A stream consists of dated data points (X1, T1), (X2, T2), . . .
such that a data point Xi observed at time t follows the distribution Dt, i.e.,
Ti ∼ PT and Xi | Ti = t ∼ Dt. Concept drift occurs if the chance of observing
two different distributions is larger zero [1], i.e., P[∃i, j : PXi

̸= PXj
] > 0. Notice

that this definition is not limited to abrupt drift but all kinds of drift, such as
gradual or recurring, and the statistical nature resolves the estimation problem.

In this paper, we are interested in constructing scenarios containing drift that
is not detected. We will first investigate this task theoretically by examining
the limiting case leveraging the definition by distribution processes. This also
allows us to prove guarantees. Afterward, we study the finite case and derive an
algorithm for the construction of drift adversarials.

3 Adversarial Attacks for Drift Detection

Most drift detectors process data on sliding windows using some statistical tool,
most commonly a metric [1] (see Algorithm 1). This allows for two natural
attack scenarios: Metric Adversarials construct distributions indistinguishable
by the metric, while Window Adversarials exploit the data selection stage.

3.1 Metric Adversarials

The most commonly used drift detectors are based on learning models referring
to the optimal model or model accuracy to detect drift [3]. However, as already
pointed out in [7] this approach is flawed and can be exploited in many cases.
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Table 1: Overview of improper adversarial functions for common windowing
schemes used in drift detection (assuming Lebesgue measure PT = λ). Cases
with Boundary Effects (BE) are marked. Proofs in ArXiv version [8].

T W Adv0 (Theorem 1) BE

R ([t− l, t], [t, t+ l]) t ∈ T f(t) = f(t+ l) ✗
two sliding windows l-periodic functions

R≥0 ([0, a], [t, t+ l]) t ≥ a
f(t) = f(t + l) for t ≥ a and

a−1 ∫ a
0 f(t)dt = l−1 ∫ a+l

a f(t)dt

fixed reference window l-periodic after a with same mean

R≥0 ([0, t], [t, t+ l]) t ≥ a a−1
∫ a

0
f(s)ds = f(a) = f(t)∀t ≥ a ✗

growing reference window arbitrary before a and then constant

Indeed, the authors provide a constructive proof that can easily be modified to
construct a metric adversarial. Other approaches for which metric adversarials
can be constructed include methods like the windowing Kolmogorov-Smirnov
test that operates feature-wise and thus ignores drifts in correlations as shown
in [1] or methods that use deep embeddings for which classical adversarials can
be constructed. However, in many cases, it is not possible to construct a metric
adversarial, e.g., when the used metric is indeed a metric. We will therefore
mainly focus on window adversarials in this paper.

3.2 Window Adversarials for Two-Window-Based Detectors

As most drift detectors work by comparing data from two windows [1] we will
focus on this setup. In the following, we consider the limiting and finite case.

The limiting case We refer to the case where we take the sampling rate
to infinity so that errors due to sampling vanish and the drift detector becomes
a map of the kernel Dt, i.e., the limiting case of Algorithm 1 takes on the form

A(Dt) = 1

[
sup

(W1,W2)∈W
d(DW1

,DW2
) > 0

]
(1)

where W is the set of all window pairs directly compared by the detector and
d is the used metric. Here, A detects drift if A(Dt) = 1. As A cannot have
false positives, the window adversarials are given by false negatives which can
be constructed as follows:

Theorem 1. Define the improper adversarial functions for A as in Eq. (1) as

Adv0(A) =

{
f : T → [0, 1]

∣∣∣∣ PT (W2)

∫
W1

f dPT = PT (W1)

∫
W2

f dPT∀(W1,W2) ∈ W
}

(2)

then A detects no drift, i.e., A(Dt) = 0, if and only if t 7→ Dt(S) ∈ Adv0(A) for
all measurable S ⊂ X .

Define the adversarial functions Adv(A) ⊂ Adv0(A) as those that are not
constant. Then, Adv(A) describes all distribution processes with drift that is
not detected by A. In particular, for f ∈ Adv(A) and distributions P ̸= Q
on X , Dt = f(t)P + (1 − f(t))Q is a window adversarial, i.e., Dt has drift
and A(Dt) = 0. Conversely, for every window adversarial A(Dt) = 0 we have
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Algorithm 2 Construction of Drift Adversarials

1: function ConstructDriftAdversarial(P,Q sampling distributions, W(n)
windowing scheme to be attacked)

2: Wn ← [1]
3: for (W1,W2) ∈ W(n) do
4: Wn ←Wn +

[
|W1|−1 ∑n

i=1 1[i ∈W1]ei − |W2|−1 ∑n
i=1 1[i ∈W2]ei

]
5: end for
6: v ← Solve(Wnx = 0) ▷ Interpret Wn as a matrix

7: v ← v−mini vi
maxi vi−mini vi

8: x← []
9: for i = 1, . . . , n do

10: x← x+ [Sample(viP + (1− vi)Q)]
11: end for
12: return x
13: end function

t 7→ Dt(S) ∈ Adv0(A). Therefore, if Adv(A) = ∅ then A detects every drift
assuming d is a metric.

Proof. All proofs can be found in the ArXiv version [8].

We want to stress that the adversaials do not depend on the metric d but
only the considered windows and that the drift detector detects every possible
drift if and only if Adv(A) = ∅. This can for example be achieved by combining
multiple drift detectors as Adv( (A,B) ) ⊂ Adv(A) ∩Adv(B).

Most detectors use a sliding window for the current distribution of fixed
length. There are three main strategies for the reference window: 1) fixed,
2) growing, and 3) sliding with fixed length [1]. Furthermore, there are two
update strategies: Either the update is performed after every single data point,
which in the limit is for every time point, or by considering chunks of data points.
For the latter, we can hide arbitrary drifts within a chunk allowing for trivial
adversarials. For point-wise updates and any of the aforementioned reference
windows, we present the adversarial functions in Table 1.

The finite case Analog to the limiting case we can also consider the case of
finite samples X1, . . . , Xn. In this case, the windows refer to which samples are
considered, i.e., W1,W2 ⊂ [n]. We will denote the set of all considered window
pairs for n samples by W(n) together with a normalized distance measure, e.g.,
a statistic test, and a decision threshold θ this leads to Algorithm 1. Usually,
there is some memory management so that we do not have to store the entire
stream which however depends on the windowing scheme W(n).

We can encode the window selection W(n) into a single weight matrix Wn

that encodes the pair (W1,W2) as the vector w = |W1|−1
∑

i∈W1
ei−

|W2|−1
∑

i∈W2
ei where ei is the i-th coordinate vector. This representation is

quite useful as it for example allows us to write the biased MMD – a kernel-based
probability metric commonly used in drift detection [1] – of the i-th window as
(W⊤

nKWn)ii where Kij = k(Xi, Xj) is the kernel matrix. For our purpose, it
is useful as the kernel of Wn can be used to construct drift adversarials. To do
so choose v ∈ [0, 1]n with Wnv = 0 and then sample Xi ∼ viP + (1 − vi)Q.
This idea is represented in Algorithm 2. If v is not constant and P ̸= Q then
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Table 2: Result of numerical analysis. 90%/10%-quintile of obtained p-values
(500 runs). Correct result is p = 0, lining marks adversarials according to theory.
The number in brackets is the length of the initial reference window.

Dataset / W fixed (100) fixed (150) grow (100) grow (150) slideing

Periodic 0.63/0.28 0.00/0.00 0.00/0.00 0.00/0.00 0.39/0.27
Rand.Const (100) 0.59/0.31 0.54/0.31 0.39/0.27 0.46/0.28 0.00/0.00
Rand.Const (150) 0.00/0.00 0.50/0.25 0.00/0.00 0.45/0.24 0.00/0.00
Rand.Per. (100) 0.49/0.26 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Rand.Per. (150) 0.00/0.00 0.65/0.22 0.00/0.00 0.02/0.00 0.00/0.00

the distributions differ for some Xi, i.e., there is drift in the sample-wise sense,
the mean distributions of the samples in W1 and W2 however coincide for all
(W1,W2) ∈ W(n) which is what Algorithm 1 line 3 is testing for. There are
ways to increase the quality by choosing v ∈ {0, 1}n or trying to avoid fast oscil-
lations as such streams are similar to non-drifting streams. Notice, that there is
a close connection between the limiting and the finite setup given by sampling
adversarial functions (Theorem 1) equidistant to obtain v. Yet, {v | Wnv = 0}
can be much larger than Adv(A) due to boundary effects (BE in Table 1).

Instead of comparing the mean distribution of two windows, some drift de-
tectors – dubbed block-based in [1] – check for any kind of drift within a single
window. Using similar techniques it can be shown that such detectors are not
prone to window adversarial attacks. In the next section, we will test our theo-
retical observations empirically.

4 Empirical Evaluation

To evaluate our methodology we consider two empirical setups: a numerical
analysis on synthetic data, and a showcase on data from critical infrastructure.1

Synthetic Data We perform a numerical analysis based on the simple two-
squares dataset [1] (drift intensity 5). We create the adversarial streams using
Algorithm 2 where line 6 is performed by hand to assure vi ∈ {0, 1} with as
little changes as possible (see Table 1). Each stream has a length of 1,000 sam-
ples, window sizes of the sliding window is 100, and (initial) reference window
is 100/150. We use the permutation MMD test [1] with 2,500 permutations
and consider the smallest p-value found in the stream. We performed 500 in-
dependent runs for each setup. The results are reported in Table 2. As can be
seen, there is a (nearly) perfect alignment of our theoretical predictions and the
empirical results with only one exceptional case.

Application to Water Distribution Networks Thus far we have considered
drift adversarials as a kind of attack where we try to hide the drift from the
monitoring system. However, in case we expect certain drifts that we do not
want to detect, we can try to construct a drift detector so that the adversarials
are exactly the expected drifts. For this study, we explicitly consider water
distribution networks from which we obtain pressure measurements [4]. We are
interested in leakage detection which can be done via drift detection. However,

1The code can be found at https://github.com/FabianHinder/Drift-Adversarials
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Fig. 1: Shape curve for different window sizes (1 day, 61
2 days, 1 week). Red line

marks leakage, orange crosses candidate points (transparency is MMD).

as the demands on drinking water are not constant over time, we expect daily
(day-night-cycle) and weekly (week-weekend-cycle) patterns, which need to be
removed before drift and leakages are directly related [4]. Following [4], we use
the Shape Drift Detector [9] which postprocesses the MMD of two consecutive
sliding windows to find candidate drift points. The result of different window
lengths is presented in Fig. 1. As can be seen, windows of one-day length detects
weekends, while a one-week length window mainly detects the leakage as desired.
Also notice, that this is not an instability of the algorithm as can be seen by
considering the window length of 61

2 days (middle figure).

5 Conclusion

In this paper, we introduced the concept of drift adversarials. We showed that
many commonly used drift detectors are subject to at least some drift adversarial
attacks. We considered the problem from a general theoretical and concrete point
of view and evaluated our findings empirically. Furthermore, we investigated the
potential of our theory to construct problem-tailored drift detectors which seems
to be a promising approach but requires further research.

Our considerations show that drift adversarials pose a major problem but
might be numerically unstable. A further analysis is yet subject to future work.
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