
Evaluating Text Representations Techniques for
Hypernymy Detection: The Case of Arabic

Language

Randah Alharbi and Husni Al-Muhtaseb*

Department of Information and Computer Science, * IRC for Intelligent Secure Systems
King Fahd University of Petroleum and Minerals (KFUPM)

Dhahran, Saudi Arabia
raharbi@uqu.edu.sa and muhtaseb@kfupm.edu.sa

Abstract. Text representation is a key component in the performance of
any hypernymy-related task. In this study, we investigate representation
techniques to understand which features best represent the hypernymy
relation, focusing on three factors of representation: word embedding, em-
bedding combination techniques, and using features. The results indicate
that different embeddings have different effects on performance; concate-
nation, ’addition and subtraction’ have led to better performance, and
using unsupervised measures has a negative effect on performance.

1 Introduction
Text representation is a fundamental step in all NLP and IE tasks. Numer-
ous types of word representation exist, from basic sparse and dense represen-
tations to complex representations such as neural embeddings. Many tasks
have adopted the use of traditional neural word embedding, such GloVe [1].
Contextual embeddings, such as Bidirectional Encoder Representations from
Transformers (BERT), provide different representations of a term based on its
context [2]. These general word embeddings can model semantic similarity and
relatedness between terms that encode various lexico-semantic and topical rela-
tions such as synonymy, antonymy, and hypernymy [3]. Some studies have pro-
posed hypernymy-specific representations to better model hypernymy-relation
for hypernymy-related tasks. In this work, we experiment with three repre-
sentation factors for the hypernymy detection task, focusing on Arabic. The
objectives of our experimentation are: (1) Evaluate hypernymy-specific embed-
dings against traditional embedding and contextual embedding. To the best of
our knowledge, no other study compares the performance of these types of em-
bedding. (2) Test the effectiveness of vectors’ combination techniques for Arabic.
(3) Evaluate the effect of adding unsupervised measure values to the representa-
tion. We selected several unsupervised measures, Weeds Precision (WeedsPrec)
measure [4], Clark Degree of Entailment (ClarkDE) [5], as unidirectional simi-
larity measures, InvCL [6] as directional similarity measure, SLQS cos [7] as an
entropy-based distributional measure and cosine similarity as baseline.

2 Methodology
The main goal of our study is to find the best text representation that models
hypernymy relations. We aim to test if hypernymy-specific embedding is bet-
ter at modeling the hypernymy relation for the hypernymy detection task. To

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

645

conduct the evaluation experiments, we have selected GloVe embedding as the
traditional embedding baseline and BERT as the contextual embedding. For
hypernymy-specific embedding, we have selected two retrofitted embeddings,
Lexical Entailment Attract-Repel (LEAR) and Generalized Lexical ENtailm-
net (GLEN), and two geometrical-based embeddings, Poincare for hierarchical
data and Poincare GloVe. To mitigate external effects on the performance, We
controlled most of the models’ hyperparameters and experimental setups. We
also evaluate several mathematical operations for combining terms embedding.
We have applied mathematical operations on our baseline embedding and three
hypernymy-specific embeddings: LEAR, Poincare GloVe, and GLEN. Finally,
we have experimented with enhancing term representations with the values of
unsupervised measures as input features. We have used features embedding for
one feature and for a combination of two, three, four, and five features. The
feature embedding is concatenated with term embeddings before being used as
input to the model. In the following subsections, we highlight the details of em-
bedding training corpus, datasets, classification models, and experimental setup.

2.1 Corpus and Datasets

AraBERT corpus: We have trained all word embedding on half the corpus
used to train an Arabic version of BERT called AraBERT [8]. It is a collection
of Arabic text of 77GB in size and with a vocabulary of 12+ million words. We
have used half of the AraBERT corpus for resource utilization training.
Arabic Semantic Relation Dataset (ASRD):We created an in-house dataset
for Arabic lexical semantic relationships, extracting data from multiple Arabic
semantic resources. It contains one-word examples for hypernym, synonym,
meronym, holonym, attribute, antonym, cause, and random words. The number
of examples is 246313. ARSD datasets, which will be publicly available.
Evaluation Datasets: We utilized lexical-semantic constraints extracted from
the ASRD to train both the embedding models and the classification models.
This suggests that having a shared vocabulary might impact the performance
of the embeddings. To mitigate this effect, we have selected seven English
benchmark datasets containing hypernymy relations from HypEval and trans-
lated them into Arabic using Google Translate, namely, BLESS, ENTAILMENT,
Lenci/Benotto, Weeds, BIBLESS, and two versions of Root9. We have filtered
the terms in these datasets to include only single-word entries that were present
in the AraBERT training corpus.

2.2 Representations Training

All representations are trained on half AraBERT corpus except Poincare, which
is trained on ASRD hypernymy pairs, and BERT, which is pre-trained on the
full AraBERT corpus. For GloVe we preprocess the corpus using AraBERT
preprocessor and we have used the original GloVe code to train our version.
LEAR is retrofitting-based embedding that takes pre-trained embeddings as
input and modifies the embedding according to lexical-semantic relations con-
straints. We used GloVe embedding and ASRD constraints as input.LEAR needs

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

646

https://github.com/ahug/HypEval/tree/master/data

synonyms and hypernyms for its Attract objective and antonym for its repel ob-
jective. We have used the official Python implementation of LEAR with slight
modifications to adapt it to our data and trained for 5, 20, and 100 iterations.
GLEN also takes pre-trained embeddings and lexical-semantic constraints, but
it generates generalized modified embeddings for all vocabulary, even those with
no constraints. We have used the official implementation of GLEN with de-
fault hyperparameters except for the number of iterations to stop training if
there is no improvement. Poincare GloVe uses a modified GloVe objective
to generate new word embeddings in hyperbolic space. It does not necessarily
use pre-trained word embedding or lexical-semantic constraints; rather, we have
used the co-occurrence calculation file generated by GloVe training as a basis for
its calculation. We have trained two versions 100D Poincare GloVe trained
using 100D Poincare ball and all vocab, and 50 × 2D Poincare GloVe trained
in the cartesian product of 50 2D Poincare balls and most frequent words of
the vocabulary. Poincare Embedding is trained using lexical-semantic con-
straints with a tree-like structure and we used hypernym and has instance from
ASRD to train it with negative examples set to 5. We have used its Gensim
implementation. We have used pre-trained BERT for Arabic (AraBERT V2),
and for each term, we have extracted features of the final layer output.

2.3 Classification Models and tasks

To Assess the effectiveness of the chosen embeddings in modeling hypernymy
relations, we have used the resulting embeddings from each model as input to
the hypernymy detection task. The detection model will classify input examples
as hypernymy or not, with two classes as output. The positive examples are hy-
pernyms, entailment, and has instance; other relations are considered negative
examples. The goal of our evaluation was not to achieve the highest performance
but rather to fairly evaluate representation models by keeping experiment vari-
ables consistent among different experiments. Thus, we have used a simple
feed-forward neural classification model for each task with an embedding layer,
one hidden layer, and an output layer. We have trained a model per embed-
ding. To evaluate the classification models, we test the trained model on several
datasets, including the test set of ASRD.

We have evaluated vector combination techniques and the incorporation of
unsupervised measures using hypernymy detection models trained on the ASRD
dataset and tests on the testing datasets. The representation combination tech-
niques experiments use the same model of hypernymy detection, but we varied
the mathematical operations used to combine the pair vectors and the size of the
resulting combined embedding. In the unsupervised measures experiments, we
have trained models to incorporate every single feature and combination of two,
three, four, and five features with term embeddings from GloVe, LEAR5, and
100D Poincare Embeddings. We have created an input features sub-network to
enable the learning of feature embeddings. We use cross-entropy loss, Stochastic
Gradient Descent (SGD) optimizer, 150 dimensions hidden layer, and ReLU ac-
tivation function on the output layer and trained for 50 epochs except for models
that use BERT representation due to time and computing power limitations.

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

647

3 Results and Discussion
Experiment 1: Evaluating Word representations:
Table 1 shows the result of hypernymy detection using different representations.
On ASRD, the best-performing model is Poincare embedding, followed by 100D
Poincare GloVe. This is reasonable since Poincare embedding is trained solely
on hypernymy examples of ASRD. Moreover, all hypernymy-specific embeddings
outperform the GloVe baseline except 50x2D Poincare GloVe. On two datasets,
50x2D Poincare GloVe models outperform others and score similarly to the best
embedding on the other two datasets. GLEN outperforms other embeddings on
two other datasets and performs similarly to the best embedding model on the
three datasets. LEAR5 performs similarly to the best-performing embedding
on four datasets. These results suggest that the performance of the hypernymy
detection task is highly affected by the datasets. For example, on both BIBLESS
and ENTAILMENT datasets, which have the same type of positive and negative
examples, the best-performing embeddings are GLEN and LEAR5. Our find-
ings are similar to the findings of [9] for unsupervised hypernymy detection for
English, which shows that no unsupervised measure outperforms others on all
of their testing datasets because of how the negative samples in a dataset are
constructed. Surprisingly, BERT is the least-performing model on the ASRD
dataset, which might indicate the difficulty of the hypernymy detection task.

Data
set

GloVe LEAR
5

LEAR
20

LEAR
100

GLEN Poinc
are
Em-
bed-
ding

100D
Poin
care
GloVe

50x2D
Poinca
re
GloVe

BERT

ASRD 0.81 0.83 0.82 0.82 0.82 0.86 0.83 0.81 0.65
BLESS 0.55 0.55 0.55 0.52 0.52 0.56 0.51 0.55 0.41
BIBLE. 0.59 0.65 0.64 0.62 0.71 0.51 0.58 0.62 0.63
ENTAI. 0.56 0.59 0.59 0.58 0.61 0.51 0.55 0.59 0.53
LB 0.53 0.56 0.56 0.56 0.55 0.45 0.55 0.54 0.58
Weeds 0.53 0.54 0.55 0.55 0.55 0.46 0.54 0.56 0.53
Root9 0.60 0.61 0.63 0.62 0.59 0.52 0.60 0.64 0.56

Table 1: F1-score results for the hypernymy detection task (BIBLE. is BIBLESS,
ENTAI. is ENTAILMENT, and LB is LenciBenotto)

Experiment 2: Embedding Combination Techniques:
Table 2 shows the result of arithmetic operations to combine terms’ vectors
for the hypernymy detection task for GloVe, LEAR5, 100D Poincare GloVe,
and GLEN. The results indicate the least effective combination techniques are
addition and multiplication. Concatenation, subtraction, ’addition and subtrac-
tion’, and ’concatenation and subtraction’ have similar effects on performance.
Meanwhile, concatenation, ’addition and subtraction’, and ’concatenation and
subtraction’ perform slightly better than other operations. Our results for the
Arabic language are similar to [10] results for Vietnamese, unlike [3] results,
which found that vector difference and concatenation are the best operations for
English. This might indicate that vector operations have different effects on dif-
ferent target languages. Nevertheless, in this study, we have used concatenation
to preserve all the information of both terms of the relation

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

648

Operations GloVe LEAR 5 100D Poincare GloVe GLEN
concat 0.81 0.82 0.83 0.83
add 0.72 0.73 0.75 0.77
sub 0.77 0.78 0.82 0.82
mul 0.68 0.63 0.76 0.78
add sub 0.79 0.80 0.83 0.81
concat sub 0.80 0.79 0.82 0.81

Table 2: F1-score for various embedding techniques and operations.

Experiment 3: Using Unsupervised Measures as Input Features
Unlike our assumption, the results show that no single feature or combination
of features is better than the baselines of using no features. Moreover, there is
no difference among feature types in their effect on performance. This might be
attributed to the new size of the representation, which makes it harder for the
model to learn the patterns that indicate hypernymy from the representations.
Also, the quality of the learned feature embeddings might be affected. Features
embedding might need more epochs to be learned. Moreover, testing on ASRD,
the used features might add little information beyond terms embedding. Testing
on a different dataset may yield different results, as features could provide ad-
ditional information about the terms. Table 3 shows the effect of incorporating
a combination of four and five features as input.

Features GloVe LEAR5 100D Poincare
No features 0.81 0.83 0.83
invCL, clarkeDE, weeds prec, cosine 0.43 0.78 0.78
invCL, clarkeDE, weeds prec, SLQS Cos 0.43 0.78 0.77
invCL, clarkeDE, cosine, SLQS Cos 0.42 0.78 0.78
invCL, weeds prec, cosine, SLQS Cos 0.43 0.78 0.78
clarkeDE, weeds prec, cosine, SLQS Cos 0.42 0.77 0.78
invCL, clarkeDE, weeds prec, cosine, SLQS Cos 0.43 0.77 0.78

Table 3: F1-score results for using combinations of four and five features as input

3.1 Discussion

From the experiments’ results, we observe that, despite being trained without
lexical-semantics constraints, 100D Poincare GloVe performs well in the hyper-
nymy detection task. This highlights the effectiveness of modeling the hyper-
nymy relation in hyperbolic space. On the other hand, GLEN outperforms
other representations on some of the hypernymy detection datasets, and it falls
short with ASRD because GLEN is known to have more impact when used with
datasets with fewer known constraints [11]. Generally, the results reveal that no
single representation consistently outperforms the others across all evaluation
datasets. This suggests that the way training and evaluation datasets are con-
structed plays a crucial role in performance. This encourages future researchers
to develop datasets that incorporate multiple strategies to generate negative hy-
pernymy examples, leading to more robust performance. The results for vector
combination techniques on hypernymy detection for Arabic indicate that when

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

649

computing resources are limited, one might choose the mathematical operation
that results in a vector with the least dimensions size (subtraction). Enhancing
the representation of terms’ embeddings with more information extracted from
calculating the unsupervised measures does not enhance the performance of the
hypernymy detection task. Further incorporation techniques other than feature
embedding should be evaluated.

4 Conclusion
In this work, we investigated the impact of various types of embeddings on the
performance of hypernymy detection tasks. Our findings suggest that the choice
of dataset used in the training and evaluation has a significant effect on model
performance. Moreover, all vector operations perform similarly except addition
and multiplication.
Acknowledgment: This work is supported by the Interdisciplinary Research Center

for Intelligent Secure Systems IRC-ISS at KFUPM through the grant INSS2405.

References
[1] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for

word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In North American Chapter of
the Association for Computational Linguistics, 2019.

[3] Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir, and Bill Keller. Learning to distin-
guish hypernyms and co-hyponyms. In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, 2014.

[4] Julie Weeds and David Weir. A general framework for distributional similarity. In Proceedings
of the 2003 conference on Empirical methods in natural language processing, 2003.

[5] Daoud Clarke. Context-theoretic semantics for natural language: an overview. In Proceedings
of the workshop on geometrical models of natural language semantics, 2009.

[6] Alessandro Lenci and Giulia Benotto. Identifying hypernyms in distributional semantic spaces.
In Eneko Agirre, Johan Bos, Mona Diab, Suresh Manandhar, Yuval Marton, and Deniz Yuret,
editors, *SEM 2012: The First Joint Conference on Lexical and Computational Semantics,
2012.

[7] Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine Schulte im Walde. Chasing hypernyms in
vector spaces with entropy. In Proceedings of the 14th Conference of the European Chapter
of the Association for Computational Linguistics, volume 2: Short Papers, 2014.

[8] Wissam Antoun, Fady Baly, and Hazem Hajj. Arabert: Transformer-based model for ara-
bic language understanding. In LREC 2020 Workshop Language Resources and Evaluation
Conference, 2020.

[9] Haw-Shiuan Chang, ZiYun Wang, Luke Vilnis, and Andrew McCallum. Distributional inclusion
vector embedding for unsupervised hypernymy detection. In North American Chapter of the
Association for Computational Linguistics, 2017.

[10] Bui Van Tan, Nguyen Phuong Thai, and Nguyen Minh Thuan. Enhancing performance of
lexical entailment recognition for vietnamese based on exploiting lexical structure features. In
2018 10th International Conference on Knowledge and Systems Engineering (KSE), 2018.

[11] Goran Glavaš and Ivan Vulic. Generalized tuning of distributional word vectors for monolin-
gual and cross-lingual lexical entailment. In the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

ESANN 2025 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 23-25 April 2025, i6doc.com publ., ISBN 9782875870933.
Available from http://www.i6doc.com/en/.

650

	Introduction
	Methodology
	Corpus and Datasets
	Representations Training
	Classification Models and tasks

	Results and Discussion
	Discussion

	Conclusion

