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Abstract. Conventional methods of supervised learning are inevitably faced with
the problem of local minima; evidence is presented that networks trained using
conjugate gradient algorithms may be particularly susceptible to being trapped in
a sub-optimal solution. A new technique is described which manipulates the
range of the function to be learnced in such a way that the network is able to
remain in or near a global minimum at each step of training. Progressive expan-
sion of the range toward the original function definition enables the network to
move across the error-weight surface in a controlled way and thus to reach a
superior solution. The method has applicability to a wide range of supervised
learning problems, and is not dependent on the details of any specific training
algorithm.

1. Introduction

The problems to which neural computing techniques are most frequently applied
involve the supervised learning of an input-output mapping, defined implicitly by a
set of P input patterns together with their desired outputs. Such tasks can be formu-
lated as error-minimisation problems, where the error function is usually given by
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where t , and z; , are the desired and actual values of the ith output unit for pattern P,
for a network with N output units. E is a function of all the parameters (weights and
thresholds) of the network.

The minimisation of a multidimensional function such as E above is a well-
studied problem in numerical analysis, for which many techniques exist. Steepest des-
cent has long been regarded as an inefficient technique by numerical analysts, yet it is
still the method most often used in neural network applications (implemented by the
well-known method of error backpropagation). However there has recently been a
growing interest in the use of neural implementations of conjugate gradient algo-
rithms as an alternative to gradient descent, as discussed for example in {1]. These
are generally much faster and can produce impressively low error levels - although as
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will be scen later may be particularly likely to be trapped in local minima. Conjugate
gradient algorithms gain their advantage from the use of second-order information
about the shape of the error-weight surface. Explicit computation of the Hessian
matrix may be avoided if the computation of successive search directions is done
using a line minimisation algorithm; in the simulations to be presented here the Brent
algorithm (a combination of parabolic interpolation and golden section search) was
used. Further details of conjugate gradient techniques and line minimisation algo-
rithms may be found for example in [2].

2. Local minima in the XOR problem

" In order to investigate the performance of conjugate gradient techiques in comparison
to more commonly used training algorithms the familiar example of the XOR prob-
lem was chosen. The experiments used the minimal (2,2,1) architecture with two
inputs x,, X2, two hidden units with outputs y;, y, and weights w;, w, and a single
output layer unit with classification output z and weights a. The target output d, was 0
for input patterns (0,0) and (1,1), 1 for patterns (0,1) and (1,0).

XOR was chosen for several reasons. Firstly, the problem has been well studied
by other workers, with results available for many variations on the standard learning
algorithms. Sccondly, it is a ’small” problem, so it is fcasible to run a large number of
trials starting from different sets of initial weights. Finally - and most importantly in
this context - XOR is the only classification problem we are aware of for which an
analytic solution for the local minima has becn obtained. Lisboa and Perantonis [3]
give a complete solution to this problem for several networks including the (2,2,1)
architecture used here. It is important to know where the local minima lie in order o
know for certain that a given net is indeed trapped, as opposed to simply having
encountered a section of the error-weight surface which appears flat to within the pre-
cision of the host machine.

Three learning algorithms were used: on-line backpropagation (BP), batched
BP, conjugate gradienis (CG) with Brent line minimisation and Polak-Ribiere update.
Over 100 trials, 97% of the on-line BP nets succeeded in solving the problem, com-
pared to a figure of 83% for baiched BP, and only 55% for CG. However the final
error levels for the successful CG nets were very much lower: an average of E €
O(10™'1), as opposed to O(107*) for both forms of BP. The results for on-line BP are
unsurprising, and similar to those reported by many other workers for this architec-
ture. On-line BP appears significantly more successful than batch mode; it is likely
that the departure from strict gradient descent introduced by single-patiern updates
serves as a useful source of noise that helps avoid local minima [4]. Is it possible to
retain the precision of CG techniques, but modify the algorithm in such a way as to
improve robustness in the face of local minima? We have experimented with various
ideas: the addition of annealing techniques, forms of on-line’ CG using overlapping
pattern sets, hybrid BP/CG algorithms [5], [6]. However the most successful
modification to the CG algorithm, which will be described below, has much wider
implications since it deals with the problem of local minima in a very general context,
independently of the details of the training algorithm.
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3. Tracking global minima by range expansion
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Fig. 1. Training curves for decreasing step size €: (a) £ = 1.0, b e=02,
(c) £=0.02, (d) £ = 0.002.

Consider a modified version of the XOR problem, in which the target output
for pattern p is defined by d,(m) = 05 +1(d, —0.5) where the d, are the
binary target values of the original problem and 1 e [0,1]. It was observed
that with 7 small the net was much less likely to be trapped in a local
minimum. This leads to the idea of starting with a small 7, solving the prob-
lem within this compressed range, taking a larger 7, training again to
convergence...until n = 1.0 (original XOR problem solved). Simulations

1
127 M = 21~ )n,,

k=1..6. In this experiment 100% of trials converged to an average error of
O(107'%), compared with 55% for the original single-stage CG training pro-
cess.

were carried out of a 7-stage process with ng =

The XOR problem has relatively few local minima [3]. More generally it would
be advisible to expand the function range in uniform steps of &: nm) = ng,n= 1..-:?

Simulations were also carried out for the XOR problem with € = 1.0 (original
single-step problem), € = 0.2 (5 steps), € = 0.02 (50 steps), € = 0.002 (500 steps).
Typical results (using the same set of initial weights for each €) are shown in Figure
1. All three versions of the range expansion algorithm ((b)-(d)) succeed in solving the
problem, but the original single-step CG algorithm (a) is clearly trapped in a local
minimum.
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3.1 Predicting the weight changes

1t can be shown that for sufficiently small step sizes there is a global minimum (and a
unique solution for the next step” weights) at cach step of training. Progressive
expansion of the range 7 allows this global minimum to be tracked up to n = 1 (solu-
tion of original problem). We assume the problem has been solved for a range expan-
sion 7, and consider the effect of expanding the range by a further small quantity €.
The error at expansion N+¢ is

P
B+e) = 553, [(n46) - 7nee)? M
p=1

" where the desired 0uiput for pattern p at this point is given by

d,(+e) = d+ (+e)(d, — d) = d, (M) +e(d, —d) @

In this expression the d, are the n =1 (uncompressed) targets, and d is the mean of
these fully expanded target values. The network weights at the start of training when
7 = 0 must be adjusted so that the output of the net (we assume here that there is just
one output node, though the method clearly gencraliscs 10 mappings to multidimen-
sional target paticrns) is equal to d for all input patierns in the training set. This is
most easily achieved by setting all output unit weights except the bias to zero (the ini-
tial hidden weights can then be randomly chosen) and adjusting the bias ag so that
zp(ag) = d.

To O(g) the output of the classifying node for pattern p is given by
H H H
z,(n+e) = () + e2,(M) (T ai@yipM) + T am)yip,m) 3 Wi x.} - (3)
i=0 = =0
where
a;(n+e) — a;(n) wi(n+€) — wy; (1)

a’i(m) :‘“_8———_’ wim) = e

and the derivatives of the neuron outputs are in this case given by z’, = z,(1 —z,),
Yip = Yip(l = Yip)-

Using (2), (3) in (1) and differentiating w.r.t. a'iv, w’; allows a;(+€), w;;(1+€) to be
calculated using y; ,(n), z,(N) and their own previous values:

P
aga(;']) = —% z Z'p(n) Yi.p(n) X [dp(ﬂ) + ﬂ(dp—d) - zp('q) -l = _% £.(n) @)
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The quantity in the square brackets in (4), (5) is given by inserting (2), (3) into the
expression d,(M+€) — Z,(M+€). Setting f;(n) = 0, f;;(n) = 0 gives 9 linear equations for
the a;(n+€), w;;(M+€); it would be possible to solve these equations explicitly, but the
process would be computationally expensive if there were many sets of weights to be
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calculated and compared. For this reason we chosc 1o assess the error in the above
procedure by substituting successive pairs of weight values (obtained from simula-
tion) into f;(M), f;;(M), defining an appropriate error function by
1
F() = [ zf2<n) L3 EemI’
i=1 j=0
F does not contain explicit factors of €; a small value for the rms error F throughout
training gives a reliable indication that the network is indeed tracking a global
minimum. Figure 2 shows for the XOR problem how the value of F decreases with ¢,
for a single randomly chosen test net learning to solve the XOR problem, and that this
effect persists throughout training. Figure 3 examines the behaviour of F with € at the
first step of training (it was not practicable to complete full training runs for the very
small values of £ used in Figure 3). It can be scen that for small € the system does
appear to be behaving according to the analysis above, remaining in or near a global
minimum throughout training. At higher orders of perturbation theory the error-
weight surface begins to pick up more complex structures, so that more care is needed
in training for larger step sizes €. For example at O(e?) there are linear equations for
the w’; and for the second-order corrections a”;, but the a’; are now given by a cubic
equation - there are now two minima available to the network, a global minimum and
a local one. However the structure of the error-weight surface is known, which gives
the possibility of avoiding the local minimum. Thus even if it is not practicable to use
very small training steps this method has the potential of delivering more predictable
results for difficult optimisation problems, and hopefully to significantly improve final
error levels.
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Fig. 2. Emror F as a function of range expansion 1, for decreasing step
size €: (a) £ = 0.2, (b) €= 0.02, (c) £ = 0.002.
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Fig. 3. Error F at the first step of training as a function of step size €.
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