ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 21-26

Embedding Knowledge
into Stochastic Learning Automata

. for Fast Solution
of Binary Constraint Satisfaction Problems

D. Kontoravdis, A. Likas and A. Stafylopatis

, Computer Science Division
Department of Electrical and Computer Engineering
National Technical University of Athens
157 73 Zographou, Athens, Greece

Abstract

We present 2 model for solving binary constraint satisfaction problems
(CSPs) based on stochastic learning automata and an underlying network
whose connection pattern represents the CSP. The operation of the learn-
ing automata yields fast convergence due to the incorporation of local and
global knowledge about the state of the network. The model, referred to as
Enhanced Stochastic Automata (ESA) model converges with probability 1
to a solution of the CSP and proves remarkably fast in dealing with large
problems.

1 Introduction

A stochastic learning automaton is a finite state machine that interacts with a
stochastic environment. The purpose of the automaton is to learn select more
frequently the action having the highest reward probability, based on an evalu-
ative signal (reinforcement) received from the environment. Stochastic learning
automata have been widely studied in the literature both as single units as well
as multiple units interacting with a random environment [5, 6]. In the latter case, -
either there are no direct interactions between the automata (team approach)
or they can serve as interacting connectionist network components.

Constraint satisfaction problems (CSPs) represent typical combinatorial prob-
lems that are usually solved with search techniques based on backtracking al-
gorithms [4]. A main characteristic of such techniques is that they require a
centralized control by the problem solver making difficult a parallel implemen-
tation. On the contrary, the learning automata approach constitutes a high
parallelizable process that adapts with time based solely on feedback received in
the past. Neural network approaches to solving CSPs share with the automata
approach the property of not advocating a hierarchical control. They are typ-
ically based on the Hopfield model [2] which suffers from the existence of local

21

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 21-26

energy minima that do not represent a solution. The above problem can be over-
come by the use of a Boltzmann optimizer [1, 3], although this is achieved at
the cost of increased execution time, since a slow annealing schedule is required
to guarantee convergence to a valid solution. '

In [7] the application of a team of stochastic learning automata to the solution
of constraint satisfaction problems has been proposed. However, the proposed
algorithm suffers from slow convergence especially when the size of the problem
was increased. The work presented in this paper concerns a solution technique
with fast convergence properties based on the incorporation of knowledge in the
operation of learning automata.

2 Stochastic Automata and CSPs

A stochastic learning automaton selects an action from a finite set and receives
feedback from the environment evaluating this action. The selection of actions is
based on an internally stored distribution over the set of possible actions. This
distribution is updated based on the feedback received from the environment and,
in turn, is used to generate the next action. Our work is concerned with the case
where the evaluative feedback (reinforcement) takes on two values 1 (reward) or
0 (penalty); thus, each action is characterized by a number representing tue
probability that the environment responds with a reward when that action has
been selected.

A constraint satisfaction problem consists in finding an assignment to a col-
lection of variables that satisfies a set of constraints among them. In the following
we shall always assume that constraints are binary, i.e., each constraint specifies
the values that cannot be taken on simultaneously by a given pair of variables.
However, the extension to the general case is not difficult. In solving a CSp
with learning automata, every variable is associated with a learning automaton
that controls the assignment to that variable. At every instant, each automa-
ton chooses an action which corresponds to the assignment of a value to the
associated variable. Following this, the automaton receives reward or penalty
according to whether the set of constraints associated to the variable are satisfied
or not. Based on the received feedback the automata modify their preferences
among the variable values, and the above process is iterated until an assignment
of values to all of the variables is found so that no constraints are violated.
The feedback received by each automaton is stochastic and this derives from the
lack of knowledge about the choices made by other automata. Moreover, every
automaton operates in a non-stationary environment meaning that the reward
probabilities of the possible actions change with time. This arises from the fact
that each automaton adapts its state in parallel with the other automata.

Suppose that we have a team of N automata Vj,..., VN, representing N
variables Xi,..., Xy with domains A,,..., AN respectively. Without loss of
generality we may assume that |4;| = ... = [An| = M. Let a;(n) denote
the output of automaton V; at time instant n. This output is drawn from a
set of possible actions 4; = {a1, .. .,a;pm} according to an action probability

22

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 21-26

distribution p;(n) = (p;1(n),...,pisr(n)). In other words the probability that
@i(n) = ayj is equal to p;j(n). The action probability vector p;(n), called the
state of automaton V; at time n, is updated based on the feedback z;(n) sent by
the environment to V;. :

In [7], the linear reward-penalty (Lr—p) reinforcement scheme [5, 6] is used
for updating the action probabilities. Assuming that the output of automaton
V; at instant n is a;(n) = ay;, the following changes are specified:

| P SR B b o
pij(n+1) = (1- b)ll’):j(") if:;' = k: and z:'(n) ; 0 1)

b/(M — 1)+ (1= b)pij(n) ifj#k; and z;(n) =0

where 0 < a,b < 1. According to the above scheme if the automaton V; selects
an action and a favorable input results, the action probability of that action is
increased while the action probabilities of the remaining acticns are decreased.
Another interesting observation is that upon failure, the actions not selected tend
to become equally probable. In contrast, the change due to success preserves
the relative probabilities of all the actions not selected. Let us denote by p(n) =
(p1(n),...,pn(n)) the state of the team of stochastic automata at instant n.
It is shown in [7] that under the reinforcement scheme given by equation (1)
the discrete time continuous space Markov process {p(n)}a>o converges with
probability 1 to a solution of the CSP. In practice, however, the average number
of steps required by the above technique to converge is particularly large, thus
limiting the size of the problems that can be solved.

3 Proposed Learning Model

Our aim is to construct a learning model that achieves a high level of performance
in terms of speed of convergence, while at the same time has the property of being
free from local minima. To this end, we introduce two concepts, both applying
whenever we have an inconsistent assignment of values to the variables.

The first concept is based on the potentiality of a selection. Suppose that a
variable X; involved in a CSP is assigned a value that violates some constraints.
At the next step it is reasonable to select among the remaining values that
variable X; can take on, the one which, according to the current assignment,
violates the smaller number of constraints. In other words we must select the
value that appears to have the greatest potential. In terms of the stochastic
automaton, upon a failure signal, the actions not selected must not become
equiprobable. Instead, the automaton based on the current outputs of all the
automata should favor the selection of the action which comparatively violates
the smaller number of constraints and, hence, has the possibility of becoming
the ‘correct’ output.

The second concept employed in our model is based on gruded punishment.
The rationale behind this concept is that whenever a set of automata receive
a failure signal from the environment, they should be penalized in proportion

23

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 21-26

to the number of constraints each one violates. The automaton violating the
largest number of constraints deserves the largest part of the blame.

In order to incorporate these concepts into the operation of stochastic au-
tomata we have developed an approach based on mapping a binary CSP onto
the connection pattern of an N x M unit network. The network offers the pos-
sibility of quantifying the above ideas and is defined as follows. Let y;; denote
the output of the ij unit, where i refers to the it® automaton V; and j refers
to aij, the jt* action of V;. The selection of action a;; from automaton V; at
time instant n, is represented by y;j(n) = 1. The thresholds 6;; and the con-
nection weights w;j im are chosen so as to enforce the constraints of the CSP. In
particular, we have wij,im = —w if i # | and actions a;; and aj, belong to the
" constraint set, while w;;m =0 in all other cases. Moreover, 0;; = 1 where 7 is
a positive constant less than w.

The notion of potentiality as explained above can be exploited in the following
manner through the structure of the underlying network. Suppose that at instant
n an automaton V; selects the action aji; resulting in a negative response from
the environment. Then for each action a;5, j # ki, not selected by V;, we consider

the quantity:
§ij(n) = [= Y wijimYim (n) — 6] (2
Im

If 6;j(n) < 0O the action a;; could be selected without any constraints being
violated. The information contained in the quantities &;(n) can be properly
used for each V; to quantify the relative potential of the actions a;j, in terms of
the potentiality coefficients fij(n) lying in the closed interval [0,1] and summing
up to unity. If k among the &;; (n) are negative then the corresponding coefficients
fij(n) are set to 1/k, and the remaining coefficients are set to 0. If all §;;(n) are
positive, the coefficients are obtained through normalization.

The graded punishment concept is also applied in a straightforward manner
by means of the network. Suppose that at some instant n there is a set V
of automata receiving penalty as an evaluation of their action. For each such
automaton V; let a;, be the selected action at that time instant. The following
quantities can be computed for each V; in V:

Gi(n) = =) Wik, imYim (n) — Oik; (3)
Im

It is easy to see that {;(n) > 0 for all V;. Moreover, the larger is the value of {;(n)
the greater is the number of constraints violated by V;. Thus, the punishment
of each V; can be performed proportionaly to ¢i(n). We define the coefficient
b;(n) as the value of {;(n) normalized over all V; in V and multiplied by an
experimentally determined factor so that a meaningful punishment is received
by each automaton. :
We can now modify the penalty portion of the (Lg-p) algorithm in (1)
to incorporate the ideas introduced in this section. The update of the action

24

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 21-26

probabilities is then performed using the following rule:

fij(n))-'l- a((l)— pij(n)) 1£J ; Ilz,- ang zggn; i i
pij(n+1) = (1- bi(pr:.]))p,-j(n) ifj’ = k: and :c:(n) ; 0 (4)

bi(n)fij(n) + (1 — bi(n))psj(n) if j # k; and zi(n) =0

where f;;(n) are the potentiality coefficients defined above and 0 < a,b;(n) < 1.
In practice it was found that it is better to have b;(n) < a so that the effect of
a penalty response from the environment is much less than that of a reward on
the action probabilities. The reinforcement scheme in (4) is a valid update rule
by the definition of the quantities f;j(n). Furthermore, it can be proved that
under ‘this scheme the Markov process {p(n)}n>o converges with probability 1
to a solution of the CSP.

We will refer to this learning model as the Enhanced Stochastic Automata
(ESA) model.. The ESA model combines the set of learning automata with the
underlying network and provides a distributed approach to CSPs. The operation
of each automaton is based on local information received from adjacent automata
(linked by constraints), as well as on global information characterizing the state
of the whole set. The fast convergence of the model to a solution of a CSP, as will
be shown in the next section, compensates for the slightly increased complexity
and makes it a very promising approach.

4 Results

Simulation studies of the proposed model have been carried out by considering
the well known N-queens problem[8]. This problem relates to the placement of
N queens on a chessboard so that no queen threatens another. We can represent
this problem as a binary CSP with N variables representing the chessboard rows
and N values representing the columns in which the queens can be placed. The
connections w;j 1, of the network encode the constraints that two queens cannot
threaten each other along columns or diagonals. Row threats are automatically
disallowed by the learning automata scheme.

All the simulations were performed starting with a uniform distribution of the
action probabilities, that is p;;(0) = 1/N foralli=1,...,Nand j=1,...,N.
Moreover, tests were carried out for a range of N between 8 and 30. The network
parameters were fixed at 7 = 4 and w = 1000 for all experiments, while the best
value for the parameter a in equation (4) was found to be 1.0. In order to
estimate the search complexity of the ESA model we performed for each N a
series of 50 runs and for each run we computed the number of iterations until a
solution was found. The results for each value of N averaged over the 50 runs
are presented in Table 1, along with a comparison between the ESA and the
model presented in [7] which is denoted by PSA (Pure Stochastic Automata).

The results reveal that the convergence of the model is remarkably fast. It
should be pointed out that each step of the ESA model is computationally more
expensive than that of the PSA, due to the estimation of the quantities fij(n)

25

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 21-26

N | Number of steps | Speedup
PSA ESA
8 | 636 74 1.53
10 | 1665 169 1.70
15 | 3073 190 1.90
20 | 4045 230 2.08
25 | 6532 275 2.20
30 | 7717 320 4.18

Table 1: Comparative results.

and b;(n). However, the average time required by PSA to find a solution on a
serial machine (Sun Sparc-station) was larger than that of ESA by a factor which
increased with N (last column of Table 1}. It is expected that the efficiency of
the proposed approach will be even more apparent in the case of a parallel
implementation. Another interesting observation is that our model compared to
the Boltzmann optimizer appeared to be at least 20 times faster on the average.

References

[1] Aarts, E. and Korst, J., Simulated Annealing and Boltzmann Machines: A
Stochastic Approach to Combinatorial Optimization and Neural Computing,
John Wiley Sons Ltd., (1989). *

[2] Hopfield, J.J and Tank, D.W., Neural Computation of Decisions in Opti-
mization Problems, Biological Cybernetics, Vol. 52, pp. 141-152, (1985).

[3] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., Optimization by Simulated
Annealing, Science, Vol. 22, pp. 671-680, (1983).

[4] Kumar, V., Algorithms for Constraint Satisfaction Problems: A Survey,
The AI Magazine, 13(1), pp.32-44, (1992).

[5] Lakshmivarahan, S., Learning Algorithms: Theory and Applications,
Springer-Verlag, New York, (1981).

[6] Narendra, K.S. and Thathachar, M.A., Learning Automata, Prentice-Hall,
(1989).

[7] Ricci, F., Constraint Reasoning with Learning Automata, Proceedings 3rd
Workshop of AI*IA Interest Group in Automatic Learning, Rome, May 6-8
(1992).

[8] Stone, H.A. and Stone, J.M., Efficient Search Techniques - An Empirical
Study of the N-Queens Problem, IBM Journal on Research and Develop-
ment, Vol. 31, pp. 464-474, (1987).

26

