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Abstract. The paper deals with transformation algorithms for decomposing
Boolean neural networks (NNs); this being done with a view to possible VLSI
implementation of NNs using threshold gates (TGs). We detail a possible tree
decomposition for COMPARISON, and show how this can be used for the
decomposition of Boolean functions (BFs) belonging to Fnm — the class of
BFs of N variables that have exactly m groups of ones. Complexity estimates
are given, the results being: (i) linear size; (ii) logarithmic depth; (iii) constant
weights; and (iv) constant threshold.

1. Introduction

In the last several years we have witnessed a growing number of TG theoretical
investigations, beside the marked revival of interest in neural networks. TGs have
received more attention as microelectronic technology has evolved up to the mature
point where it is possible to realize small NNs in silicon, and to foresee the VLSI
implementation of large NNs [11, 12]. TGs are a challenging alternative to classic
Boolean solutions due to their intrinsic nonlinearity, and the solid theoretical back-
ground [13, 16, 17]. The new interest in TGs is proven by many articles from the
late 80s and 90s [1, 2, 5-10, 15, 18-22], as well as proposals of implementations
[2, 5, 18, 21, 22], or even designs [14]. This paper falling in this trend, is the result
of an ongoing work at KULeuven focused towards reducing the complexity of Boolean
NNs, with a view to their efficient VLSI implementation using TGs. The meaning
of “reducing a NN” is that after applying such an algorithm to an “input NN”, the
“output NN” will be “simpler” with respect to: (i) fan-in of neurons [6, 7], (ii) precision
of weights [3, 4], and (iii) approximation of the sigmoidal output function [5].

As decomposition is an immediate solution for fan-in reduction, the paper will examine
how to decompose TG circuits. We will focus on COMPARISON as one of the most
interesting 7,1 function. By using the solution we propose in this article, together
with the one detailed by the authors in [6, 7], we develop a systematic algorithm
for the class Fn,m. Complexity bounds are proven. Conclusions and further directions
of research end the paper.
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2. Comparison

The following notations will be used in this section: B and C (the “constant”) are
two binary numbers of N bits each B = by-1bN-2...b1bg, C = cN-1cN-2...c1c0. COM-
PARISON, which is a Fn,1 function, has received a lot of attention from the “TG
community” [2, 18, 19, 22]. It can be defined as:
1 if B>C 6
Q(Bc) -
. 0 if BsC
e classical way to look at COMPARISON is the well known serial algorithm:
- Compare bit by bit the two numbers starting from i = N-1 (the MSB); if for the
- current bits b; > ¢; then Q (B,C) = 1; if b; = = ¢; then go to the ngxt bits (decrement
i, and if i< 0 then Q (B,C) = 0); if b;<c; then Q(B,C) = 0 ~. Another way is
to try to compute COMPARISON in parallel, and that is what we shall do.
Divide B in n groups (not necessarily equal, but for the ease of notations we will
consider them equal) Bx-1,Bx-2,...,02,80, where B; = b (41)¥4-1 ... biN; (We have
also considered n divisible by n, which is also not really necessary but simplifies
notations); similarly divide C in 7 groups Yn-1,)Xn-2,...,X2.X0, Where % = € (i+1) ¥4 -
-1...ciN;. If we use + and x instead of the logical operators OR and AND, we
can write:

n-1 -1 (2)
Qn (B,C ) = 20 Q ( Br-1-i, X,n-l-i) x j]:[oﬂl ( Bre-ivj » Xou-inj = 1 ) ,

-1
where []= 1, and the subscripts indicate how many groups are compared.
0 :

Proposition 1. COMPARISON can be decomposed in ® sub-COMPARISONs
using only linearly separable functions in a tree-like fashion.

Proof. The proof of this statement is by induction. For n=2 equation (2)
becomes:

Siz (B,C) = Q1 < B1,x1 ) + Q1 < B1,x1-1 ) x Q1 ( ﬁo,xo) 3

which is of the form x + y x z, and can be implemented by a TG:
(2x +y +2z )15 (the notations are from [13, 17]).

Now suppose it is true for xt; we want to prove it for +1. Refining
equation (2) we can determine a recursive version:

Qre1 (B,c) = Ql(ﬂ,,,x,,)+ Q](Bn,x,;-l)x
n~-1 ;.
x 2 Q1(Bn-1—i,xu—1-i )x 'I'l[ Q1(ﬂn-i+j,xn-i+j— 1) =
i= j=0
=91(Bn,x,t)+ Ql(Bn’,X;t—l)XQn(B,C) @
From equation (4) one way to decompose COMPARISON is shown:

<2x+ Y+ +y + ... )1,5)1 s; it is not interesting as it leads to an
unbalanced n leveled tree, but we should mention the fact that the
weights are either 1 or 2 (i.e. 2° and 2°). If one tries to determine
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the weights of the compound function starting from the inequalities
arising from the truth table of the x + y x z function, might be quite
amazed to find out that no weights satisfy the system of inequalities
(i.e. the function “seems” to be not linear separable). The authors
when taking this approach have also been puzzled; the clue being
that the input variables are not “independent input variables”, and
some combinationS cannot occur (i.c. the function is incompletely
specified). Assigning the unspecified (don’t-cares) values to 0 and
1 in a proper (smart) way, leads always to a determined system of
inequalities, thus justifying that the compound function is linear separ-
able. Although correct, this line of proving is manageable, but quite
difficult.
A better idea is to built the Qn41 as a 2x+ 1 inputs TG: 2w~ 1
. inputs being copies of the previous Qr TG, and the two more inputs
coming from Qi ( Bx, )(,;2 and 521< Ba,Xn-1 ), with weights 2" and,
respectively 271} assign 2"~ 14 as the thresh6ld of this Qe TG.
This TG satisfies equation (4):

wif Q1 Bn,Xn )= 1, then Qus1(B,C) = 1as2"> 2% -14;

mif Qi1f Br, Yz = 0, but Q1 B, Y - 1)== 1, the decision can be
taken‘only by considering Qx (B,C ):
o if Qu(B,C) = 1 then Quy1(B,C) = 1 as 2" 1+ 2715 2715,
o if Qz(B,C) = 0 then Qns1(B,C) = 0 as 2™ 1< 2" _1p;

mif Q1 Br,xn Y= Oand Q Bn,xn-l)= 0, then Qn+1 (B,C ) =
= 0 for any value of Qy (B,C ) as 2% 1 & 2% _ 15,

This concludes the proof. []

3. Application to FN,» decomposition

Beside the useful class of symmetric functions [6, 7, 22}, another known class is
FN,m: the class of BFs with a given number of groups of ones (Fam in the original
article [16], but has been changed to be consistent with the notations we have used
in [6, 7]). If we allow m to grow exponentially (not very interesting) with respect
to N, FN,m = BN, the set of all n-ary BFs. Here N represents the number of input
variables, and m the number of groups of ones in the truth table of the function to
be implemented £ € FN,m. As basic subfunctions for constructing the TG circuit for

f € FN,m Red’kin [16] uses Y{(¥) and ¢; (G ) which are COMPARISONs.
3.1 Size and depth

Because there are only m groups of ones we can use 2m TGs to compare the limits
for these groups of ones (in the worst case, as it might be possible to need only
2m-1 or even 2m-2 TGs — the exceptions being for the first and the last of the n
groups); one more TG is needed to “sum” the outputs from this first layer in an
alternate way: +,-,+, ... (see fig.1). The 2m TGs forming the first layer have
weights <2V (exponential); threshold <2V! (exponential); and fan-in N (linear).
The TG from the second layer has weights + 1 (i.e. it is a MAJ gate); threshold 0.5;
and fan-in 2m. Now let us impose the same fan-in limitation as in [6, 7] “allow
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. N-1 N
Fig. 1. The two layers TG circuit for f € Fnm.
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only TGs with fan-in ns 2.

The TG from the second layer can be decomposed as has been shown in {6, 7]. The
tree has depth log (274), and size 2m —n + 1. As the other 2m TGs from the first
layer are COMPARISONs, we can decompose each one as shown in section 2. For
each of these 2m TGs we can build a tree (see fig.2) of size 2(N - #2 + 1), and
depth log (V).

123 4 5678 91011 12 13141516
Fig. 2. Decompodition of COMPARISON for N=16 and n=4 (TGs not used are tinted).

Linking these results, we have for Vf € Fnm:
NG(N,m,n)==(2m—n+1)+ 4m-(N-'?2+1)=0(mnN), and ®
NL(Nmn) = log< 2%) + log( 2”/;;) =0 [ log ("'N/n2 )] ©)
As n can be considered a constant for a given technology, the size and the depth
of the network are O (mN), and O (logmN ) respectively.
3.2 Weights and thresholds

An interesting thing to analyze is what has happened to the weights and the thresholds.

Proposition 2. Any of the 2m TGs from the first (input) layer has weights and
thresholds reduced to less than 2%,

Proof. The value 2 comes from the assignment of the weights suggested

in proposition 1. The value #2 of the exponent comes from the fact
that each TG can have at most 7 inputs (due to the imposed fan-in
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limitation), and the weights are: 1, 1, 2, 2, 4, 4, ... (in fact we will
always use only n -1 out of the n allowed inputs, see fig.3).

(o)) Q) Q3
2 1 1 4 2 2 1 1 8442211

2 1 1 2% 2 1
. 2 01 1 2

Fig. 3. TG for Q;, Q2, Q3 showing the series of the weights: 1, 1, 2, 2, 4, 4, ... .

1

Because 7 has been a considered constant, these values are also constants. 0O

4. Conclusions

The paper presents a new decomposition algorithm for FN,m functions. It improves
on the known algorithms with respect to the well known cost function “number of
gates” (size) and “number of layers” (depth) [see also 6, 7].

While N is related to the area of the circuit (A ~ size), Nz relates to delay T =
depth). The VLSI complexity measures AT and AT? can be estimated by NG NL
and NG - Ni? leading to AT = mN - log(mN ), and AT? = mN - log2 (mN).

A significant problem to reveal is that of the error made by assuming A = NG might
be quite large. Due to the fact that weights have to be siored in some way in the
case of TGs as opposed to classical Boolean gates (area of a capacitor, size of a
resistor, ...), the size of a TG depends on its weights’ values. That is why a more
correct estimate would be the cost function we have introduced in [S]: the number
obtained by summing all the weights (in modulus).

The claim made in [6, 7] that “while decomposing, we also reduce the range of the
weights” is supported by the direct relation between the limited fan-in value and the
limited value of the weights. ,
As further direction of research we are interested in bridging the gap between the
two classes of BFs for which algorithms have been defined [6, 7]. Work is under
progress, and it seems that, at least for simple logical combinations of two functions,
one belonging to one class and the other belonging to the other class, a similar
efficient decomposition should be possible.
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