ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 57-63

A learning and pruning algorithm for genetic
boolean neural networks

Frédéric GRUAU

CENG/DRFMC/SP2M/PSC, BP85X 38041 Grenoble and
LIP-IMAG, URA CNRS, ENS-Lyon 46 Allee d’Italie 69007 Lyon

Abstract. The Genetic Algorithm (GA)can be used to find neural networks.
In this paper, we present a learning algorithm designed to train boolean neu-
ral networks produced by the GA, using a cellular encoding of the neural
network. The algorithm looks for weights in the range {—1,0,1}. The aim
of learning is to speed-up the GA. Learning is fast but not 100% success-
ful. Experiments report learning of the parity and the symmetry boolean
functions.

1 Introduction

Genetic Algorithms can be applied to the problem of finding neural network architec-
tures, or, in other words, deciding how many hidden units a network should have and
how these units should be connected. In this approach, the central problem is how to
encode a neural architecture on codes that can be manipulated by the GA. Typical
encodings assume that there is a bound on the number of hidden units; the genetic
algorithm can then be used to determine a neural network architecture within a
finite range, that yield improved computational behavior. These directly coded net-
work architectures have usually been trained using back-propagation. These ideas
are implemented in {7, 9, 5] . Still, the problem of directly optimizing a network
architecture is the highest cost of each architecture evaluation. If we must run a
back-propagation algorithm for each evaluation, the time consumed for number of
evaluations typically needed to find improved network architectures quickly becomes
computationally prohibitive. The computation cost is typically so high as to make
genetic algorithms impractical except for optimizing small topologies.

There are new directions being explored for optimizing neural network architec-
tures such as grammar based architecture descriptions [6, 8] that may display better
scaling properties. In our approach the genetic algorithm is used to develop both the
architecture and the boolean weights for neural networks that learn boolean func-
tions. Instead of coding these architectures directly, a grammar free is used which is
both more compact and more flexible than direct codings or previously developed
grammatical representations. This representation is called cellular encoding. In [3],
we used a genetic algorithm to recombine and mutate grammar trees and showed
that neural networks for the parity problem and symmetry problem could be found.
Furthermore, the grammar trees are recursive encodings that allow for whole families
of related networks that compute parity or symmetry. In this way, once small parity
or symmetry problems are solved, the grammars can generate solutions to parity
and symmetry problems of arbitrary size. Gruau and Whitley [4] showed that it is

57

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 57-63

possible to get a speed up by combining the GA with a neural network based learn-
ing. Their study focused on how to use the learned information, rather than on the
learning itself. They used a hebbian based learning for only one epoch, that flips no
more than 2 or 3 weights. In [2], we describe a learning that fits networks generated
by the genetic algorithm using cellular encoding. This learning algorithm looks for
boolean weights (+1). Choosing weights within {—1,1} is very restrictive. In this
paper, we extend the learning described in [2] so as to choose weights in {—1,0,1}.
Setting a weight to 0 amounts to prune the link. Finally, we report experiments with
the target boolean functions parity and symmetry.

2 Specification of the learning algorithm

The proposed learning algorithm is designed to train networks generated by the
GA using the cellular encoding. Therefore it has some specific requirements. The
GA produces networks with integer biases and boolean weights. We do not learn
the bias because the cellular encoding of a bias is compact. There is no need to
specify a link number, which is the case if we want to encode a weight-change.
Hence the GA needs less effort to encode the right biases than the right weights.
The neuron’s sigmoid is the step function. A neuron n computes its net input which
is the weighted sum of the neighbour’s activities. If the net input is lower or equal to
zero, the neuron’s activity is set to 0, else it is set to 1. The GA generates thousands
of networks, so learning needs not be 100% successful on each network. On the
other hand learning must be fast, because the time of a GA run will be the learning
time taken for one neural net multiplied by thousands. The purpose of the learning
is to refine a neural net produced by the GA. It should change correctly a few
weights in order to increase the performance of the network. It may find the global
optimum, if the neural net before training is close to it. The networks generated by
the GA using cellular encoding have some particularities. The neurons are sparsely
connected, usually the fan-in is 2 or 3. The number of layers is high, so a standard
back-propagation would fail. Most of the weights are 1, only a few weights are -1.
This is because weights are set to 1 by default, and only negative weight values must
be encoded. The learning algorithm should take advantage of these particularities.

3 The Switch learning Algorithm

We now describe the learning algorithm. We call it the “Switch Algorithm”. At
each epoch, all the patterns to be learned are forwarded through the network. After
each pattern is passed through, we update two positive variables for each neuron n:
rn and w, and six positive variables for each link I: ri[v] and w[v}, v € {~1,0,1} In
fact, we do not consider r;[vo] and w;[vo}, where vg is the value of the current weight.
The letter r stands for right and w stands for wrong. Let o be an output unit, if
the activity of o is the desired output, r, is set to 1 and w, is set to 0, otherwise,
r, is set to 0 and w, is set to 1. For a hidden unit h the variables r), and wy are
computed o as to give a hint about the correctness of h’s computed activity. If rj
is high, the activity of h is right, a modification of h’s activity is likely to decrease
the performance of the net on the currently processed pattern. If w is high, the

58

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 57-63

Let c be the neuron currently processed;
oni:=the old net input of c;
For each neuron n that fans into ¢ through link 1
If (1's weight is not null)
Try to modify n’s activity;
nni = the new net input of ¢; d=Abs(nni-oni)/2;
Switch(Comp(nni,oni))
Case 0 : if(Small(oni)) r_n += r_c;
else r.n += r_c s pi
y_h += ¥y _n + ¥_C;
Cage + : r_n += w_c * p2;
Cage - : wn+= v cesplsd; rn+mrcse pdsd;
It (n is an input unit) PS=1; Else PS=1/p§;
If (n’s activity is not null)
For all v in {-1,0,1}, v not equal to 1’s initial veight
Try to set 1l's weight to v;
nni = the nev net input of c¢; d=Abs(nni-oni)/2;
Svitch(Comp(nni,oni))
Case 0 : if (Small(oni)) r_1{v] += r_c * P5;
else r_ 1{v] += r_c » p1 » P§
v.1l{v] += v c;
Case + : r_1{v] += w_c » p2 = PS5;
Case - : w 1{vl += w_c * p3 *+d « P5; r_1(v] 4= r_c s p4 » d » PS;
Elseif n is not input unit
For all v in {~1,0,1}, v not equal to 1’'sinitial veight
Try to both set 1’s weight to v and modifyn’s activity;
nni = the nev net input of c¢; d=Abs(nni-oni)/2;
Svitch(Comp(nni,oni))
Case 0 : if(Small(oni)) r_n +='r_c * p6; r_1{v] += r_c * PS5 * p§;
else r_n += r_c » p1 & p6; r 1{v] += r_c s pt & P5 = p6;
w.n += w_c ¢ p6; v_1[v] += w_c * p6;
Case + : r_n+= w_c ¢ p2 ¢ p6; r_1{v] += w_c » p2 » P5 & p6;
Case - : w.n+=uw_c*p3 sdsp6; wllv] += v c*p3 s ds= PS s p6;
ra+sr.cepdsdasp6; rlfv] 4= r_cspsdsdsP5s p6;

Fig.1. The Learning Algorithm. Function Comp returas 0 if its arguments are of oposite
sign else it return the sign of the difference beetween the absolute values ot its first and
second argument. Function Small returns 1 if its argument is 0 or 1, and 0 otherwise. The
operator += increments the variable of the left side by the quantity in the right side.

activity of h could be wrong, a modification of h’s activity is likely to increase the
performance of the net. Similarly, for each link I, if r;{v] (resp. wi[v]) is high, setting
I's weight to v is likely to decrease (resp. increase) the performance of the net on
the currently processed pattern.

In order to compute the value of all these variables we process the neurons one
by one, backwards, starting from the output-units, as in back-propagation. The
algorithm sketch in figure 1 shows how to process one neuron. Let ¢ be the currently
processed neuron. There are three possible trials to modify ¢'s activity: We can
either change a weight on a link ! that fans into ¢ (trial t;) or modify the activity

59

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 57-63

of a neighbour n that fans into ¢ (trial t;) or else do trial ¢; and ¢, at the same
time (trial ¢3). For each neighbour n that fans into ¢ through link I, the learning
algorithm successively tries t;, and one among t; or {3 depending on the activity of
n. For each trial ¢; it analyses the effect of the modification on the neuron c. If the
effect is desirable, it increases w, if ¢; has modified n’activity and w;[v] if ¢; has set
I’s weight to v. If the effect is bad, it increases r, if t; has modified n’s activity and
ri[v] if t; has set I’s weight to v. There are three kind of effects, following the change
of the net input of ¢ which is the weighted sum of the neuron’s activity that fans
into ¢, minus ¢’s threshold.

— ¢€;: The net input of ¢ changes its sign (0 has the sign -). Thus c’s activity
changes. If w, > 0 we wanted c’s activity change with a strength w.. We register
the fact'that the trial ¢; is worth with a strength w.. We add w, to w, or wiv]
depending on t;. If r. > 0 we did not want ¢’s activity to change with a strength
r.. We register the fact that ¢; is bad with a strength r.. We add r. to r, or to
ri[v] depending on ;.

— e5: The net input increases in absolute value. If we wanted ¢’s activity to change,
this effect is bad because the change will be harder. Thus we add w, to r, or
ri[v}], depending on {;.

— e3: The net input decreases in absolute value. If we wanted ¢’s activity change,
the effect is desirable since the change will be easier. We add w, to w, or wi[v]
depending on ¢;. If we did not want c’s activity to change the effect is bad because
¢’s activity is less stable and will be more easily changed. We add r, to r, or to
ri[v] depending on ¢;.

Until now, the Switch Algorithm looks like a standard back-propagation. How-
ever there is a difference. The quantities r. and w, that are back propagated, are
multiplied by a coefficient which is used to rank the relative importance of the
corresponding change in a weight value or an activity value. These coefficient are
produced using 6 parameters p;, i = 1,...,6;0 < p; < 1. Each of these parameter,
corresponds to a particular heuristic. Parameter py promote the change of the ac-
tivity of a neuron having a small stability. This kind of strategy has already been
used in [1]. It has theoretical and experimental foundations. Parameters p;, p3 and
ps rank the importance of the effect e1,ez, and the two cases of e3. We prefer to
try to learn new patterns rather than consolidate old patterns. This heuristic can
be implemented by choosing p3 >> p4. An input unit’s activity is fixed. Therefore
we can better evaluate the effect of a weight change on a link that fans out an input
unit. Parameter ps is used to register this fact. The trial t3 allows to register an
information that is relevant only if we make at least two weight changes, one to
change the weight of the link that fans in ¢, another changes a weight upstream
the neuron n connected by ! in order to modify n’s activity. On the other hand, the
information computed using t; or t; is relevant for one weight change. Since the in-
formation computed during trial #3 is less precise, we multiply the back propagated
quantities by pe in t3. The effect eg is more important if the change in the net input
is 2, than if it is 1. Therefore, we multiply the backpropagated quantities by §/2
where § is the absolute value of the difference between the net input before the trial
and the net input after the trial. The algorithm in fig 1 can be implemented with 8

60

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 57-63

multiplications, 7 additions and 4 conditional branching for processing one link, by
computing the coefficients in advance, for each possible ¢’s net input, I’s weight and
n’s activity.

Once all the patterns have been processed, the wi[v] and ri[v] corresponding to
each pattern are summed. A fitness fi[v] is computed for each link I, v € {-1,0, 13\ {ve},
where vo refers to the current weight. We use the formula: fi[v] = w * wifv] - r«
ri[v] — d * d;. The positive coefficients r, w and d parametrize the learning. The
fitness fi[v] measures how interesting would be to set I’s weight to the value v. The
variable d; refers to the depth of the link I which is the length of the maximum path
from this link to an output unit. The fitness of a link f; is the maximun of hilv),
The two links in the whole network that have the lower fitness are selected. One of
these two links is chosen for a weight change. The one with the highest fitness is
chosen with a probability p higher than 0.5. The weight of the selected link is set
to v where fi[v] is the maximum fitness. After the weight change, the performance
of the neural net with the modified weight is computed. This performance is the
total number of correct outputs divided by the number of patterns divided by the
number of output units. If this performance increases, we accept the weight change,
if not, we still accept it with a probability exp(—A/T). T is a temperature, A is the
decrease in the performance. From one epoch to the other T is decreased, in order to
do simulated annealing. If the weight change is accepted, then the weight of the link
that has been selected for change is frozen for e epochs where ¢ = ¢; +eq* cg‘, ey, €2
¢3 are positive parameters. Due to the term e, tcg‘ in this expression, the links near
the output units will be frozen a longer time. This counter balanced the fact that
these links are more likely to be selected, due to the term —d«d; that appears in the
computation of the fitness f;. Thus, the algorithm starts by modifying weights of
units near the output units, which is better because the information is more relevant
there. It then carries on by modifying weights of deeper units.

4 Experiments

We now describe three sets of experiments during which we try to learn 2 boolean
functions: the parity and the symmetry. For each target function, we consider a
genetic code found by hand that produces a family of neural networks such that some
links must be pruned by learning in order to find a solution. We tested the Switch
algorithm on the first three neural networks of the family. Networks developed with
cellular encoding are a relevant benchmark, since the learning algorithm is designed
to be combined with cellular encoding. We represent the third network of the family,
with a set of correct weights found by the learning in fig 2. We use two modes for
the weight initialization: In the first mode we set all the initial weights to 1, in the
other mode, we set the weights with a random value +1. For the symmetry we set
the parameters to py = 0.3, p; = 0.5, p3 = 0.04, ps = 0.006, ps = 0.17, ps == 0.02,
r=35,w="7p=08,d=05,¢; =2,e; = 1, e3 = 0.7. We keep the same parameters
for the parity exept for w = 6, d = 2, py = 0.7. The initial temperature is set to
1 and we divide it by 1.01 after each epoch. We run 32 trials for each experiment,
and compute the average and standard deviation of the number of epochs needed
to reach the solution. In order to obtain an estimation of the standard deviation

61

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 57-63

of the average, the standard deviation of the result must be divided by V32. We
want learning to be fast and we do not require 100% of success. We therefore allow
only 100 epochs. In the following table the rows report in this order, the target
application, the mode of weight initialization, the network number which is L, the
number of successful trials, the average number of epochs of the successful trials and
the standard deviation of the number of epochs.

target| parity symmetry
weights] one {lrandom|ff one [/random
Li1{2]3]1 2[3}{1]2]3
success| 32]32(32|(32 32{31)132/15| 8
epoch{ 3|6 {17{ 8 7116{116]41{34
SDJ1{1}7{{6 4112{{14;22]26

Fig. 2. The third learned network for the parity and the symmetry. Circles represent neu-
rons. If the threshold is 0, the circle is empty, if it is one the circle is filled with black. A
continuous line indicates a weight 1, a dashed line a weight —1 and a dotted line a null
weight.

In the first set of experiments the target is the parity function. The parity of
1+ 1 binary inputs returns the sum of its input modulo 2. We used a code found by
hand that develops a network family (N;) such that (N;) has { + 1 input unit, 3 +!
hidden units, 8 « I connections, 2 * ! layers, In the next set of experiments we try
to learn the symmetry function. The symmetry of 2/ 4+ 1 binary inputs returns 1 if
and only if the input is symmetric and the middle bit is 1. We choose a code that
develops a network family (V;) with the following features: Network (N;) has 2/ + 1
input units, 3 # [hidden units, 11 * ! connections, 2 * [layers.

The experiments show that starting with initial weights of 1 helps the Switch
Algorithm. When there are a lot of -1 weights, as with random initialization, the
neuron’s activity have a greater probability to be zero. When too many activities
are 0, the Switch Algorithm is not able to retrieve useful information.

62

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 57-63

5 Conclusion

In this paper, we present a learning algorithm called “Switch Algorithm” that has
been designed to refine neural networks produced by the Genetic Algorithm, with
the so-called cellular encoding. During one epoch, the Switch Algorithm guesses the
best weight to change, and also the best value into which to change it. This value
can be ~1,0 or 1. This learning suits to the particular class of neural nets that are
generated by the GA. These neural nets are made of units having a small fan in,
and therefore, the number of connections is also small. They have a great number
of weights 1, and many layers (up to 6 in our experiments). Moreover, the Switch
Algorithm fulfills some extra requirements imposed by the GA. It is quick but not
100% successful. Experiment shows that a success rate above 20% is achieved with
an average number of epochs under 40, on networks having up to 8 hidden units.
For a complete validation, we must conduct a test with the GA and measure the
speed up brought by learning with the Switch Algorithm.

References

1. M. B. Gordon, P. Peretto, and D. Berchier. Learning algorithms for perceptrons from
statistical physics. Journal de Physique, january 1993.
2. F. Gruau. A learning algorithm for genetic neural networks. submitted to IWANNS3.
3. F. Gruau. Genetic synthesis of boolean neural networks with a cell rewriting develop-
mental process. In Combination of Genetic Algorithms and Neural Networks, 1992.
4. F. Gruau and D. Whitley. Adding learning to the the cellular developmental process: a
comparative study. Submitted to Evolutionnary Computation, 1992.

5. S. Harp, T. Samad, and A. Guha. Toward the genetic synthesis of neural networks. In
D. J. Schafter, editor, $rd Intern. Conf. on Genetic Algorithms, pages 360-369, 1989.

6. H. Kitano. Designing neural network using genetic algorithm with graph generation
system. Complex Systems, 4:461-476, 1992.

7. G. Miller, P. Todd, and S. Hedge. Designing neural networks using genetic algorithm.
In D. J. Schaffer, editor, 3rd Intern. Conf. on Genetic Algorithms, pages 379-384, 1989.

8. Eric Mjolness, David Sharp, and Bradley Alpert. Scaling, machine learning and genetic
neural nets. La-ur-88-142, Los Alamos National Laboratory, 1988.

9. D. Whitley, T. Stakweather, and C. Bogart. Genetic algorithms and neural networks,
optimizing connection and connectivity. Parallel Computing, 14:347-361, 1990.

63

