ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 91-96

PROBABILISTIC DECISION TREES.
AND MULTILAYERED PERCEPTRONS

Pascal BIGOT and Michel COSNARD
Laboratoire de 'Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
69364 LYON Cedex 07 - FRANCE

Abstract: We propose a new algorithm to compute a multilayered
perceptron for classification problems, based on the design of a binary
decision tree. We show how to modify this algorithm for using ternary
logic, introducing a Don'tKnow class. This modification could be applied to
any heuristic based on recursive construction of a decision tree. Another
way of dealing with uncertainty for improving generalization performance
is to construct probabilistic decision trees. We explain how to modify the
preceding heuristics for constructing such trees and associating
probabilistic multilayered perceptrons.

1. Introduction.

Supervised learning is often used for the solution of classification problems, as for
examples pattern recognition problems involving labeled training data [GS88]. Many
learning algorithms have been proposed for solving this problem. For multilayered
perceptrons the well-known back propagation algorithm [RMS86] is such an effective
solution. However, this algorithm is based on the minimization of an error function
by using a gradient descent techniques which is slow to converge. Moreover it
assumes that the architecture of the network (number of layers, number of units per
layer, connections between layers) is known in advance.

Recently several works [Bre90], [SM90] have been devoted to the study of the
relationship between neural nets and decision trees. A decision tree completely
classifies the training set, by iteratively dividing the training data into subsets until
each subset is homogeneous. Hence the architecture of the tree is not fixed but
directly depends on the training set. Several methods already exist for computing
decision trees for a given set of data. Brent [Bre90] has proposed an algorithm for
associating a two-hidden-layered perceptron to a binary decision tree. The number of
units of this perceptron is directly proportionnal to the number of internal nodes in
the decision tree. Hence minimizing the number of units is related to the
minimization of the tree size. This problem is known to be NP-complete [HR76],
but Brent proposes a specific heuristic. Experimental evidences of the efficiency of
this heuristic are given. Sankar and Mammone [SM90] have also proposed a new
training algorithm for constructing tree structured neural networks. In this paper, we
introduce two new heuristics and discuss the generalization capabilities of these
learning algorithms. In order to improve these capabilities, we propose to introduce a
measure of the quality of the classification. This leads to the definition of
probabilistic classification trees.

2. Binary decision trees.

91



ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 91-96

Before studying in detail the construction of binary decision trees, we describe how a
multilayered perceptron can be associated to such a tree. For simplification purpose
and without loss of generality, we shall assume that the number of classes is 2. First,

each node in the fan-in layer is associated to one coordinate in R”. So there are n fan-
in nodes. Second, in the first hidden layer, each node is associated to a nonterminal
node of the tree. If H is the hyperplane corresponding to such a nonterminal node:
H=ajx] + ..+ apxp + dg, the weights of the node are (g; ) and the threshold is (-ap).
Third, each node in the second hidden layer is associated to the path between the root
and a leaf. The weigth of the connection between such a node and a node in the first
hidden layer is 0 if the associated nonterminal node is not in the path, I (resp. -1) if
the right (resp. left) son is in the path. The node computes the conjunction of its
inputs. The fan-out layer contains only one node (logk nodes in case of k classes).
The weights of the connections with the nodes in the second hidden layer are 0 if the
path associated leads to a leaf labeled 0 and I if not. The node computes a disjunction
of its inputs.

3. Learning algorithms for binary decision trees.

Let S be a finite set of training points x in R®, each point being assigned a class c(x)
from a finite set C of possible classes. ¢ is assumed to be a single valued function
from R™ to C. A learning algorithm aims to construct a function % which
interpolates ¢ on S (x(x) = c(x) for x in S) and is able to predict the class c(x) of a
point x which is not in S. This second property is called the generalization capability.
Using S, we construct a binary decision tree T whose nonterminal nodes are linear
tests of the form H(x) > 0 : H corresponds to an hyperplane which splits R"™ into two
halfspaces. The leaves of the tree partition R” into polygonal regions labeled by a
class. The tree is said to correctly classify S, if for any x in S, the corresponding leaf
to which x belongs is labeled with c(x). Several correct trees could be associated to a
given training set. Brent proposes to select a tree which maximises a specific criterion
related to a measure of the entropy associated with the tree. Call E this criterion (we
refer the reader to [Bre90] for a precise definition of E).

First we describe the class of algorithms defined by Brent in [Bre90]. Recall that an
hyperplane H is chosen for maximizing criterion E. Finding a global maximum of E
is generally too difficult. Brent proposes to construct a local maximum by reducing
the problem to a 1-dimensional problem. The following heuristics may be used: try
the k(k-1)/2 possible normalized differences of centroids of two distinct classes, try a
random vector of unit length, try the n possible unit axis vectors. Assume that the
hyperplane is chosen parallel to the axis directions, for instance. To an hyperplane is
associated a partition P of §. This partition is defined by the list
P=(r1.r2,...rkd1,12,...1Ik) where rj (resp l;) is the number of points of class i in § on
the right side of H (resp on the left side). In order to have a new partition for a given
direction, H is displaced until one point moves from one side to the other and a new
partition is obtained.So, for one direction of H, there are at most m possible
positions of H associated to m different partitions of §. For a given partition, there
are several possible positions of H between two points in S, and the algorithm has to
choose this position. For instance, it may pass through the middle of the two nearest
learning points. The algorithm is the following:

92



ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 91-96

Function Separate(S:learning sample) : binary decision tree
If all the points in S belong to the same class then stop.
Else For all the directions computed by the heurictic do
Choose a direction of hyperplane.
Find the partition of S maximizing E
Build St= SN (Hmax>0) and S2= S (Hmax<0).
Tree(rightson)<-Separate (S1)
and Tree(leftson)<-Separate(S2)
Separate <- Tree

The use of the n possible unit axis vectors corresponds to a popular classification
technique for symbolic learning ID3 proposed by Quinlan [Qui86]. This makes
hyperplane tests cheaper but usually increases the size of the tree. Mammone and
Sankar propose in [SM90] to associate a perceptron with n fan-in (one fan-in for each
coordinate) and one output ( 0 or / for the class) to each nonterminal node of the tree.
This perceptron achieves a linear dichotomy of the space. The perceptron computes
the classes of the learning sample points and a distance between the computed and the
expected classes. Then its weights are changed with the perceptron learning algorithm
in order to reduce the error of classification. As a consequence, the position of the
associated hyperplane is changed, too. The algorithm returns the hyperplane of the
node when some convergence criterium is reached. The learning sample is then
separated as previously into S/ and §2 .The algorithm is recursively applied to S
and S2 until all the points in the learning sample are of the same class. The
algorithm is the following: :

Function PerceptronTree(S:learning sample) : binary decision tree
If all the poinst in S belong to the same class then stop.
Else Initialise weights i

Repeat
compute the error-distance
change the weights.
_Until convergence is reached
Build S1= S n (Hmax>0) and S$2= S N (Hmax<0).
Tree(right son) <- PerceptronTree(S1)
Tree(left son) <- PerceptronTree(S2)
PerceptronTree(S) <- Tree

When the tree is built, it can be used to compute the class of any new example.The
tree divides the space in (¢+1) polygonal regions (if ¢ is the number of nodes in the
tree). Each region is associated to one leaf in the tree and, so, to one path from the
root to a leaf: the sides of the region are the hyperplanes met on the path associated
and all the learning points of this area are of the same class. Hence, the classification
of a new example (a point outside S) is done by traversing the tree from the root and
evaluating the positions of the point with respect to the hyperplanes on the path: the
point belongs to the polygonal region corresponding to the leaf and its class is the
class of this leaf. This algorithm has been used for a classification problem proposed
by Sejnowsky using Brent's heuristics. The problem is to classify sonar targets which
can be mines or rocks. There are sixty parameters to analyse and we have 208

93




ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 91-96

examples. The algorithm runs on a fraction of this data and the classification tree is
tested on the remaining examples. The learning examples are correctly classified but
only 75% of the new examples.

4. Ternary decision trees.

It is known that the generalization capabilities of a multilayered perceptron depends
strongly on the quality of the training. In this part, we shall propose to us¢ ternary
logic in our decision process. First we present a new algorithm based on the
following principles (see Baum [Bau88] for related theoretical issues). Consider first
that there are only 2 classes, labeled 0 and I, and divide § into Sg (the class 0 points)
and S]. Take n points from Sg and construct the hyperplane H through these points.
If the points are not in general position, add some points until 4 is uniquely defined.
Assuming that no class  point belongs to H, call 3+ and 4. the distances of the class
1 points nearest to H, above and below. Let H. (resp. f.) the translated hyperplane
H+84/2 (resp. H-6.12). The region R(H) between H 4 and H. will be given label 0.
The cardinality of R(H) is the number of class 0 points in R(H). If we choose at
random the » points from Sg, R(H) could be very small. The best choice would be to
consider all the possible regions and to take the one which contains the maximum
number of points of Sg. However, for practical applications, this method is too
expensive. As for Brent's method, we propose to derive a new scheme by reduction to
a 1-dimensional optimization problem:

Function MaxRegion(S(,S1:learning sample) : n-dimensional region
Choose at random a subset Q of n-1 points in S(,
For all the points x in S -Q do
Using Q and-x compute R(H)
Keep R(H) of maximal cardinality
Return R(H)
Algorithm Classif1(S(,S1:learning sample)
While Sg is not empty do
Classify all points of MaxRegion(50,S1) in class 0
So ;= S0 - MaxRegion(50.51)
Classify remaining points in class 1

It can be shown that the computational complexity of this algorithm is polynomial.
A very interesting feature of this algorithm is its dissymmetry: the classification
process is centered on the class 0 points. This could be important in the case of
classes of different importance, as for example in the sonar application: it is essential
that mines be correctly classified, even if there are several errors for rocks. We
propose first to modify algorithm Classif] in order to implement it in a binary
decision tree: repeat the process in the two halfspaces created by a MaxRegion.

Algorithm ClassifTree1(S(,S 1:learning sample)
If Sg is empty then return
Else Classify all points of MaxRegion(S(,S1) in class 0
Sp := Sp - MaxRegion(S0,S1)
Divide S into Sp+ and Sp- acording to H

94




ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 91-96

Divide S7 into §7+ and S;- acording to H
ClassifTree1(Sg+,S1+)  ClassifTree1(Sg-,51-)
Classify remaining points in class 1

ClassifTreel can be used in a similar way as a decision tree. Assume that the tree
possesses ¢ nonterminal nodes. These nodes correspond to MaxRegions and the (t+1)
leaves correspond to remaining regions. Hence given a new example x, traversing the
ClassifTreel is done by testing on each internal node if x belongs to the
corresponding MaxRegion, or to one of the halfspaces. In the former case, classify x
with class 0. In the latter, choose the son node corresponding to the halfspace to
which x belongs. If x reaches a leaf, classify x with class 1. Such a decision tree can
be computed by a one hidden layer neural network. A couple of nodes in the hidden
layer is associated to the couple of hyperplanes defining a MaxRegion and the
outputs are 1 for both if the point belongs to the MaxRegion. Remark that the sum
over all the nodes’ outputs is 0 if the point is not in one MaxRegion. and is greater
than 2.otherwise There is only one node in the ouptut layer computing this sum.
Hence the weights are 1 and the threshold is 2.

The dissymmetry of ClassifI has some drawback in the case of symmetry of the
classes, and is difficult to generalize to more than 2 classes. In the following we
propose a modification of the algorithm which is based on the introduction of a third
(or k+1st) class corresponding to a Don’tKnow value. If the algorithm returns this
value for a point x, no class will be given to x. The algorithm is the following:

Algorithm ClassifTree2(S(,S1:learning sample)
ClassifTree1(S0,S1)
ClassifTree1(S1,50)
For all points classified in both class 0 and 1 do change to
Don’'tKnow
Classify remaining points in class Don’tKnow

This algorithm could be easily extended to more than 2 classes. Its computational
complexity is still polynomial. Some remarkable features of this algorithm are to be
underlined: it correctly classifies all the training patterns and generalizes well on
particular function classes.

5. Binary decision trees and probabilities.

In a general case with no information on the function to be learned, we do not know
how reliable are the results when computing on new examples. When we apply the
classification tree to compute the class of an example the algorithm has not learned,
for each nonterminal node in the tree, the position of x with respect to the associated
hyperplane H is computed. Since, the choosen hyperplane position is arbitrary, the
answer will be arbitrary if the point is between the two learning points the hyperplane
separates. We propose o introduce the probability Py for the point to be on the left
side of the hyperplane H. This probability will depend on the position of the point
between the two learning points. The main requirement is that Py = I on a training
example. So, for each nonterminal node of the tree, we compute a probability to be
on the left or on the right side of the associated hyperplane. Then, for each path in the
tree, we compute the product of these probabilities along it. Hence we obtain the

95




ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 91-96

probability for the point to be in the associated region. The sum of all the
probabilities obtained for the regions of the same class gives the probability of the
point to be in the class. Suppose that we can compute all the trees obtained by giving
all possible positions between two points to each hyperplane of nonterminal nodes.
Hence, for a new example, we can compute its class by all the trees. The fraction of 0
over the total gives the probability for this point to be in class 0.

References

[Bau88] Baum E.B. "On the capabilities of multilayer perceptrons”, Journal of
Complexity 4, (1988), 193-215

[Bre90] Brent R.P "Fast Training Algorithm for MultiLayer Neural Nets", Numerical
Analysis Project NA-90-03, Computer Science Department, Stanford University,
(1990).

[GS88] Gorman R.P., Sejnowski T.J., "Analysis of Hidden Units in a Layered
Network Trained to Classify Sonar Targets", Neural network, Vol 1, (1988), 75-89,
[HR76] Hyafil L., Rivest R.L., "Constructing optimal decision trees is NP-
complete", Information Processing Letters, 5(1), pp 15-17, (1976).

[Qui86] Quinlan J.R., "Induction of decision trees", Machine Learning, 1,(1986), 81-
106

[RM86] Rumelhart D.E., McClelland J.L., “Parallel Distributed Processing”, Vol 1,
MIT Press, Cambridge, Mass, (1986).

[SM90]Sankar A., Mammone R., "A Fast Learning Algorithm for Tree Neural
Networks", Proceedings of the 1990 Conference on Information Sciences and
Systems, Princeton, New Jersey, (1990).

96





