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Abstract : Certain premotor neurons of the oculomotor system fire at a rate pro-
portional to desired eye velocity. Their output is integrated by a network of neu-
rons to supply an eye position command to the motoneurons of the extraocular
muscles. We develop a biologically plausible self-organizing neural network that
can simulate this system, known as the neural integrator. This network inten-
sively uses recurrent connections in its hidden layer. It learns by using a general
supervisor that continuously minimizes several error-functions using the Leven-
berg-Marquardt algorithm and corrects all the weights. We also prove that the
network can easily recover from various lesions and perform signal processing
more complicated than just integration.

1. Introduction

The oculomotor system is responsible of all the eyes movements. These movements
are either volunteer (such as pursuit or saccadic movements) or reflex (such as the
vestibulo-ocular reflex : VOR). Let us explain a little bit more : the VOR moves the
eyes in the head whenever the head moves, so that the line of sight does not change
in space and tmages remain relatively stationary on the retina.

Thus, the oculomotor system receives different signals :

o from the paramedian zone of the pontine reticular formation (PPRF) for the
volunteer saccadic movements.

¢ from the retina. The retina gives a signal proportional to the error between the
fovea (center of the retina) and the target in a pursuit movement.

o from a push-pull pair of semicircular canals (located in the ears). These canals
sense angular head velocity and use it as an eye-velocity command to execute
the VOR).

All these signals are treated and then the oculomotor system sends command signals
to eye-muscle motoneurons,

In brain, the signals are coded in the modulation of each discharge rate around a
steady background rate of about 100 spikes/s. The motoneurons of the extraocular
muscles, at the other end, drive the eyes with discharge rate (also coded as modula-
tion around a background rate of about 100 spikes/s) that are proportional to a com-
bination of desired eye velocity and position : the eye-velocity component
overcoming orbital viscosity (it initially moves the eye), the eye-position component
counteracting orbital elasticity (it maintains the eye in an eccentric position).

When the neurophysiologists studied the oculomotor system, they noticed that all the
incoming signals were coded in term of velocity but the command signals sent to the
eye-muscles motoneurons were coded in term of velocity and position : an integra-
tion was clearly occurring.

This concept is illustrated in fig. 1 to explain the generation of the command of a sac-
cadic movement. We understand the role of the integrator : it produces the eye-posi-
tion component from the incoming eye-velocity signal. The integrated signal is
added to the first signal and there are both sent to the muscle-motoneurons.
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Fig. 1. Principle of generation of a saccadic movement.
2. The neural integrator
Fig. 2 shows the signal processing involved in the oculomotor system where we can

distinguish three main inputs: the paramedian pontine reticular formation, the retina
and the semicircular canals.
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the first time that the role of a
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in mathematical terms :

vyt = | x(t) dt. Fig. 2. Signal processing of the oculomotor system.

The question of the location of this integrator raised many problems. Finally, Cheron
et al (1986) and Cannon and Robinson (1987) showed that it lies in the nucleus pre-
positus hypoglossi, behind the abducens nuclei. [6]

Becker and Klein (1973) showed, from measurements of the drift of the eye in
eccentric positions in the dark, that the time constant, T, of the leaky neural integra-
tor in humans is on order of 20 seconds.

3. The different models

The question arises of how to build an integrator with neurons. Positive feedback has
always been the favored hypothesis. If cells could excite themselves through local
network connections, the activity, once started would be persevered : integration !
Two problems immediately appear : one must integrate the eye-velocity signal with-
out its important background rate and build an integrator with a leak rate correspond-
ing to a time constant of 20 seconds out of neurons with a membrane time constant
of 0.005 s (in other words, an increase of four orders magnitude is required). More-
over, the system must be robust : it may not be sensitive to small fluctuations in its
parameters.

3.1. Basic models

The first model was proposed by Robinson (1970) who simulated the integrator ana-
logically. He proposed a black box whose transfer function was calculated by several
measurements of gain, phase lags, time constant, ... The model was correct but it
didn’t have the faculty of learning.
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The first neural network idea is to connect two neurons with lateral connections.
Indeed, the lateral feedback model or laminar network model is a very important
type of feedback models, frequently encountered in brain networks : this type of net-
work allows us to elaborate biologically plausible network.

Fig. 3. Basic model of two neurons (Cannon, Robinson [2]).
We see that the dynamics for an individual neuron were modelled by a first-order
process with a time constant, T, of 5 ms. This value is an upper limit for T based on
measurements on membrane potential transients induced by current injection (Rall,
1960).
It’s possible to prove that if du; and du, are equal but opposite deviation for a con-
stant level (with —du, = Su; = 8u) the transfer function of each neuron is:
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We see that if we-w = -0.99975 with 7 equal to 5 ms and vg-v = 0.01, then the step
response of neuron 1 is that of a simple, first-order, leaky integrator with a time con-
stant of 20 s and a gain of 2.0. On the other hand, if we calculate the transfer function
for the case du;=du; (i. e. : the background rate), we find that the step response of
neuron 1 is a first-order integrator with 7=2.5 ms and a gain of 1.0. Thus, it’s possible
to control independently the time constant and gain for DC and push-pull signals.

It’s important to notice that this system is the first to solve the two main difficulties
for the simulation of the integrator : integrating only the push-pull signals and not
the background rate, obtaining a time constant of 20 s.The problem with that system
is its weakness : a change of 0.005 in w or w, change T from 20to 1 s !

3.2 Other models
This model generated several other models in order to obtain more robustness. The
disadvantage is the fact that all the weights of the connections are fixed and it’s

impossible for the system to learn something and act like a biologically plausible
network.

4. Our learning model

We use the basic network of Arnold and Robinson [3] that is the extension of the
model of fig. 3. This network consists of a push-pull input (from, i.¢., the semicircu-
lar canals), a variable number of interneurons and two motoneurons (fig. 4.). All the
neurons were modelled by a summer foliowed by a first-order lag with a time con-
stant of 5 ms.

If y; is the output of the interneuron i, we can deduce:

N 2
TR = Z W,'j)’j(r) + Z Vit (1) @
j=1 k=1
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Fig. 4. Learning model for the integrator.

The input of each motoneuron is the weighted sum of the activity of each interneu-
ron : m; = X z;; . y; . And finally, the eye position is given by the difference of the fir-
ing rates of the two motoneurons : ey, = my(t) - my(t).

4.1. Learning algorithm

How can we learn a network to integrate 7 The solution of back-propagation must be
discarded because of the first-order lags combined with a recurrent lateral networks.

We choose a more biologically plausible solution : a general supervisor of all the
weights using a general feedback. This supervisor continuously verifies if the output
signal is the right integral of the input signals. This system is shown in fig. 5.We use
an optimization technique in order to continuously verify if the integrator’s working
properly. This supervision consists in the minimization of an error-function whose
variables are the weights of the full network.

The problem was to choose an optimi-
zation technique that could be very
quick and that could support the mini-
mization of an error-function depend-
ing of a lot of variables.

We chose the Levenberg-Marquardt
algorithm which can minimize the sum
of the squares of m nonlinear functions
in n variables. In our case, the n vari-
ables are the weights v;;, w; and z;;.

The Levenberg-Marquardt algorithm
is a popular alternative to the famous

Gauss-Newton method and is of the e 5.S o of ] X
tI'l]St-regiOIl type. 1g. 3. dSUpErvision o the neural network.

g OPTIMIZATION |

So,it F(x) =% f,-(x)z, we must find a vector p such that F(x +p) leads us to the mini-
mum very quickly. The quality of the chosen method is due to the fact that it can ulti-
mately achieve a quadratic rate of convergence, despite the fact that only first
derivatives are used to compute the search direction p. The number of iterations to
find a minimum can be, at least, divided by two in comparison with a classical steep-
est-descent algorithm. [4].

An important question is the correct choice of the error-functions f;(x). We obtain a
first approximation of the desired weights thanks to a fitting between the output
curve and a desired curve (so we fixed fi equals @(v;;, wy;, 2, i) — i where f; is the
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k™ error-function, @ is the output of the network at time #; and y, the desired output of
the network at time #;). After only about 300 iterations, we obtain a neural network
which can properly integrate; we must now learn it to have an human behavior.

We choose thus as error-functions a combination of two parameters : the rate at which
images slip across the retina must ideally be null and the time constant of the leaky
integrator must equal 20 seconds. After about 50 iterations, we get a correct neural
network that simulates the integrator of the oculomotor system.

The continuous supervision system of the network only calculates these error-func-
tions and verifies if the system maintains itself at the minimum. If the system leaves
the minimum, new weights are immediately determined and applied.

We developed a training model with four and then sixtecn interncurons.
4.2. Results

The training with 16 interneurons provides us some interesting results. Fig 6. shows
the integrated signal and its derivative (that ideally must fit the input signal).

First of all, the training leads automatically to a push-pull distribution of the inputs to
hidden layer weights v;; (fig. 7.).

The trained network seems biologically plausible : if we examine the output signals of
the interneurons, we can note that neurons tend to be either sensitive to eye velocity as
well as eye position (burst-tonic) or to eye position alone (tonic). We have also noticed
the presence of position and velocity signals in opposite direction that has been noted
only rarely in monkeys. All these signals are similar to the neural recordings held in
the Faculty of Medicine in Mons.

We trained the network of 4 interneurons by forcing a push-pull distribution of the
input weights : we found a solution for the network (which integrated properly) but
this solution was not biologically plausible because all the interneurons outputs were
burst-tonic. No tonic interneurons appeared : this fact probably discards the model
proposed by Robinson in 1985 [1]. -

We can also remark that we couldn’t find any kind of order in the distribution of the
lateral connections weights w;;. Fig 8. shows a 3D plot of the weights wy; (i, j=1..16):
this «chaos» produces an intcgrated signal.
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Fig 6. The integrated signal Fig 7. The distribution of the input weights Vi
and its derivative (ibetween 1 and 2, j between 1 and 16)

4.3. Recovery from lesions and learning

We can measure the correctness of our model by simulating some common lesions. All
these lesions were applied to the 16 interneurons network (the more robust). We dem-
onstrate that our model can recover from the more common lesions : hemilabyrinthec-
tomy, a lesion of the peripheral sensory receptors on one side.

Hemilabyrinthectomy was simulated by removing the inputs from one of the canals
(we kept only the background rate of 100 spikes/s). After only 250 iterations, the net-
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work was able to integrate properly with only a single canal input.

We killed an interneuron to study the effect : the time constant fell from 20 to 1 sec-
onds (just normal with only 16 interneurons) but after 200 iterations, the time con-
stant of 20 s was recovered with 15 interneurons.

We also learned our model to induce post-saccadic drift. This was done experimen-
tally by having a subject watch a random dot pattern while making spontaneous sac-
‘cades. After each saccade the entire pattern slid briefly in the direction opposite to
the saccade. After several hours, the subjects’ eyes would spontaneously drift back-
wards after making a saccade in the dark. This was simulated in 150 iterations (fig.
9.). This illustrates the ability of the neural integrator to perform signal processing
more complex than just integration in order to reduce retinal slip.

-
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Fig. 8. Lateral connections weights Fig. 9. Induced post-saccadic drift

w;; (i and j between 1 and 16)
5. Conclusion

An efficient learning model is proposed for the neural integrator of the oculomotor
system. It has the ability of learning and recovering from lesions quite quickly. But
this model remains quite simple, a more biologically plausible network will be
developed by using a parallel processing and characterize some parts of the network
(just like in the brain).

Moreover, the field of applications is wide and large : the first interest of the simula-
tion of the oculomotor system appears in vision (one can apply the VOR to a camera
to avoid low acuity). But, more generally, neural integrators can be used in any pro-
cess control which use feedback loops.

Acknowledgment : This work was supported by the EN.R.S. (National Fund for the Scientific
Research). )

References
1. Cannon S.C., Robinson D.A. : A proposed neural network for the integrator of
the oculomotor system. Biol. Cybern. 49. 127-136 (1985).
2. Cannon S.C., Robinson D.A. : An improved neural network model for the inte-
grator of the oculomotor system. Biol. Cybern. 53. 93-108 (1983).
3. Armold D.B., Robinson D.A. : A leaming network model of the neural integrator
of the oculomotor system. Biol. Cybern. 64. 447-454 (1991).
4. Gill PE., Murray W., Wright M.H. : Practical Optimization, Academic Press, pp
401 (1981).
5. Cheron G. Godaux E., Laune J M., Vanderkelen B. : Lesions in the cat prepositus
complex: effects on the vestibulo ocular reflex and saccades, J. Physiol (London).
372.75-94 (1986).

Jean-Philippe DRAYE - FN.R.S. Research Assistant.

Faculté Polytechnique de Mons - Laboratoire PLP. - Rue de Houdain 9, 7000 MONS.
Tel : +32 (0) 65 37 40 56 Fax : +32 (0) 65374500 E-mail : jpd @pip.umh.ac.be

128





