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Abstract. The recent development of micro—computers in association with
the improvement of data acquisition techniques and signal treatment has
made easier the analysis of cerebral electrical activity (EEG).

But the methods based on classical harmonic analysis have been proved
to be ineffective in detecting some activities such as epileptiform
spike-and-waves of paroxystic origin.

In order to detect these spike-and-waves, we developped a signal
treatment based on Morlet’s wavelets. This treatment generates a 2D
representation including the time/frequency componants of the EEG signal’
split into 5-second epochs. In these figures, the spike-and-waves are
detected by neural networks. The result is then stored into a file, for
delayed use.

1. Introduction

The most commonly used treatment methods of biological signals areé based on
frequency analysis and power density spectrum (FFT), but unfortunately this frequency
representation is not suited to the study of transient events. For example, in EEG analysis,
many methods have been developed for detection and quantification of paroxystic activities
using spike and seizure recognition programs, but the analyses based on morphological
aspect of these paroxystic events are strictly localized in the time domain. So it is
lempting to speculate whether time-frequency analysis would be useful for detection and
quantification of paroxystic EEG activities.

The wavelet transform analysis deserves some attention for it allows such
time-frequency representation of the signal. It has been used in applied signal processing,
and first in geophysics {7]. This method was recently introduced in biological domains [3,
8, 9] and in the case of EEG {4] we obtained characteristic shapes on analyzing experimental
spikes—and—-waves.

In these conditions, image analysis can be carried out by comparing expected patterns
to given templates [1]. Another way would possibly consist in using neural networks.

As a matter of fact, one of the aims of wavelet transform is to provide an easily
interpretable visual representation of signals. This is a prerequisite for further
applications, such as pattern recognition [5].

145



ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 145-150

In this way, a neural networks processes the whole time—frequency representation of
the recording every S5-second epochs. The network recognizes the typical representative
patterns of epileptiform phases occuring during the totality of the experiment dnd then
records the temporal occurences of the detected events. The recording file allows a delayed
reconstitution of the unfolding of the signal paroxystic phase.

2. Material and Method

- Paroxystic epileptiform events are induced by inira—peritoneal injection of a GABA

antagonist (picrotoxine 2mg.kg"1) to chronically implanted rats, with cortical electrodes
for EEG recording. The EEG signal is amplified and directed to a PC 386 computer. A 12
bits ADC card samples and numerizes the signal at 200 Hz.

We may now formally define the problem of wavelet detection. This operation is
carried out in delayed time, from the stored signal.

The chosen wavelet was the same as that written by Morlet. The Morlet’s wavelets are
complex functions, concentrated in time and frequency, each presenting the same shape and
are mainly function of two parameters namely a and b, but unlike Gabor’s wavelet, the a
parameter quantifies the dilatation (or compression) of the time scale rather than an actual
frequency change.

The basic wavelet expression is:

" wi () = elkt (1212 \/2_e-k2/4 o) Q)

k is an arbitrary constant.

According to the value of the constant &, we can obtain several shapes of basic wavelets
within the same gaussian envelope.

We can generate other analyzing wavelets by dilatation (or compression) in frequency
domain using the parameter a. Thus, we obtain a class of wavelets (namely a wavelet
family) the elements of which all have the same shape and are spread in frequency domain:

wi(t/a) = eikt/a (3—12/2a2_ \/2_ e‘k2/4_e-12/82) -

Moreover, the energy of these wavelets ( / [wk(t/a)]2 dt) has to be constant whatever
the value of a. This is obtained by multiplying wy(v/a) by 1/ \/a_ . Thus:

wka®=1/\/a [wg(t/a)] (3

For application of the wavelet transform method to EEG time-frequency analysis, we
have to choose an adequate frequency of the basic analysing wavelet of the family, which is
called the "mother"; in practice, we fixed this frequency at 10 Hz. This 10 Hz mother
wavelet was obtained using the formula (3) where the compression parameter a is the ratio
(0.08) of the period of the mother wavelet (0.1 sec.) by the period of the basic wavelet
wi(D) (1.25 sec.).
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Let us condider a wavelet S(n). The (n) index denotes that the wavelel may appear
according to many variations. We denote by S the wavelel which has the general shape of a
paroxystic spike and by S(i) the particular, exact, shape of the ith paroxystic spike in the
given EEG signal. The wavelet S(i) is a function of time. Since we work with digital
compulters, we have to use the sampled wavelet, namely the string of D; equally spaced

samples of the wavelet.

These will be denoted by :
S () (k=kikj+l1,...ki+Di-1) 4

Equation (4) has to be understood as follows : the ith sampled wavelet starts at
sample number K; and ends at sample number kj+D;-1 (i.e: its duration is D; samples).

We assume that outside the D; samples the wavelet is zero namely Sy(i) = 0 for all
k>k;{+Dj~1. The signal we are monitoring consists of many wavelets, each of them having
a different "gain”, G(i). We may therefore write the signal, S; as the summation of all
wavelels:

Si= Zi G)S (), (=1.2..) 5)

The signal Sy (represented by its kth sample) is therefore the collection of the

wavelels as they appear along the time axis.

The root wavelet is determined at 10Hz. The six root-derived wavelels are spread
over 3 octlaves distributed on both sides of this central frequency (i.e.: 1.25Hz, 2.5Hz,
5Hz, 20Hz, 40Hz and 80Hz). Ten bands per oclave give an adequate frequency resolution
to the form recognition executed by the neural networks.

3. Image Preprossessing

The wavelet transform enables a time/ frequency image (Fig. 1) of the signal which is
analysed in this way. A region of interest is defined between 30 Hz to 80 Hz. Indeed, the
varialions in frequency caused by wave points create an increase of the high frequencies in

comparison to a normal recording.
AHALYIE PAR ONDELETTES DE MORLET D°UN SIGHAL EEQ
]

h k
signal i o POV S | S
5.0 = L A o Lt I 3
frequence en base 2.0 sequanca 85 425.0 & ¢ terwps < 430.0 =
80.00 Hz

40.00 Hz

20.00 Hx

10,00 Hz

3.00 Mz

2.50 Hz

1.25 Hr

Fig. 1. Time/frequency wavelet transform
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3.1 Threshold Image

We carry out a threshold of the image in the region of interest (Fig. 2), in order to
eliminate any possible low amplitude frequency which would not be generated by spikes.
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Fig. 2. Threshold image

3.2 Extractions of Parameters

A mean pixel number of 30-80 Hz is calculated using the threshold image. This provides a
representation of the time/frequency information between 0 and 1, as well as a lower output
of data.

80 Hz
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N

4, Neural Networks
4.1 The task

The construction of neural networks is done automatically by localizing the learning
for each neuron. This method consists in taking a neuron, carrying out the learning process
on the whole data base containing 2 forms to be classified (form A and form B). If there is
no convergence after N iterations (N=50), the 2 forms are not geometrically separable. The
unfiled data is sorted so as to keep the 'well filed’ data only. A new leaming session is
carried out from this data which enables us to obtain a pre—classification for a neuron. The
system then creates a new neuron, and ensures the learning process of the data form A which
was badly filed in comparison to the data of form B as a whole. It carries out the same
operation as previously (sorting of badly filed data and relearning) to obtain a convergence.
The system repeats this once more, recreates a neuron until all the vectors of the form A are
filed with regards to the form B.

The input layer is thus obtained in the same way. This implies that the data which
characterizes the 2 classes are separable in an N-dimensional space. For hidden and output
layers, it is synthetized by means of logical functions {2, 6]. This method enables a very easy
hardware implementation of the system.
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4.2 Learning rules

The rule used is the generalized delta rule. Its tranfer function is a sigmoid which
guarantees a convergence if data are geometrically separable and places the hyperplane at
maximum distance with regards to the marginal points.

Sigmoid function Sum function

PV v= Z.N XiC; %)
S=f(v)= i=1"11

PV

Weight adaptation

Ac = (D-S) 8 £(v) / 8(¥) Ciy1 = +HAC;
(8)

v ~> decrease with a number of iteration

D —> want output

During the learning period, we used the crossed-validation rule. This rule consists in
dividing the data into n sections. The learning is carried out in n—/ set and is tried out on the
last one. This operation is carried out » times.

During the test, the transfer function is replaced by a threshold function, and 100% of the
learning examples have been correctly classified.

Xi-1 ;
AND Output
t 0 =not Spike
AND
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Fig. 3. Neural Networks

5. Results and Conclusion

When only very few data remain to be filled, it is better to duplicate so as to ensure a
convergence if the form B contains a large quantity of data.
The classifier is undergoing tests on a larger data base for it to be validated. With this type of
network construction we are no longer obliged to resolve the problem of the definition of
the number of neurons in a hidden layer.
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The results which are obtained in this way are stored in file and the expert analyses
the sequences of spikes to discover when they first occurred.
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