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Abstract. Many authors use feedforward neural networks for
modelling and forecasting time series. Most of these applications
are mainly ezperimental and it is often difficult to extract a
general methodology of the published studies. In particular, the
choice of the architecture is a tricky problem. We try to combine
the statistical techniques of linear and nonlinear time series with
the connectionist approach. The asymptotical properties of the
estimators lead us to propose a systematical methodology to
determine which weighis are nonsignificant and to eliminate them
in order to simplify the architecture. This method is applied 1o the
famous Sunspots benchmark and to some artificial series.

1 Introduction!

We are interested in time series processes, which can be viewed as generalized
non-linear ARMA models, defined by a recurrence equation

Y= f(Y Yy gn¥y_ py Xy W)+, fortez (1)
where (X,) is a R? valued sequence (deterministic or not sequence)

f is a (generally non linear) function : R? tetm R

the vector W is the parameter ( € R™) of the model,

(¢;) is a sequence of independent and identically distributed
random variables, with mean 0 and finite variance 0'2, such that ¢, is
independent from the past (Y,), ., .

The equation (1) defines a very large and general class of models. The idea
i1s to restrict ourselves to the class of the functions f which are associated

1This work was partially supported by EDF, Direction des Etudes et des
Recherches, Clamart.
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with @ multilayer perceptron, with one hidden mon-linear layer, one inpul
layer with (Y, _,Y;_g 400 Yy s X,) as inputs, and one linear outpul
unit whose desired value is Y.

This choice of the function f is motivated by recent but now classical
results of the approximation capability of multilayer perceptrons. ([Cybe],
[Horn(a)]),[Horn-(b)].

Many recently published studies (for example : [Ginz], [Lape], [Varf], and
others) use neural networks for time series analysis, but most of them are
overall experimental. Other papers propose more general methodologies : for
example, C.de Groot and D.Wiirtz [Groo] present an exhaustive comparison
between various statistical and connectionist analysis applied to two
examples, A.S.Weigend et al. [Weig] introduce an intuitive method for
weight elimination, etc... Here we take a theoretical approach, based on prior
statistical knowledge, and in particular on the asymptotical properties of the
weight estimators.

2 The Linear Case

Let (Y,) be a linear autoregressive process AR(p), represented by the

recurrence equation p

Y,=p +_El"‘iyt —it¢& (2)
t =

for t € Z, and where some coefficients o; can be constrained to be 0.

The assumptions are :

1) The process (Y,) is a 914 order stationary process, i.e. E(Y,) is a constant
and Cov(Y,Y, , h) 7}, depends only on h, and not on ¢.

2) (¢) is a sequence of independent centered random variables with a
common distribution and finite variance o2,

3) ¢, is independent of the past of the process (Y,) (which is equivalent to the
condition :

The roots of the polynomial E a; 2P 7' =0,with ap = —1, lie inside the
unit circle). =0

Note that we do not consider in this paper the case of the autoregressive
moving-average models, (ARMA models), which can be written

Y,= y+EaY +Za € j -

It is clear that (2) can be 1mplemented by a linear neural network
(ADALINE), with p inputs, one input fixed to 1 for the threshold y, no
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hidden layer, and a single output unit. The coefficients (o4, oy, ..., o, i) are
the connection weights.

Using T +p observations (V,,Y,,...Yp p), learning in the network
consists of minimizing the sum of the squared residuals

~ S(eym) = (Y, - Y7,
where a = (a;,ay,.. .,ap)' (thé " is the transposition operator) and
' ~ p
Yi,=up +_Elath—i .
t=

This is exactly the Box-Jenkins conditional least squared method [Box]. It is
refered to as conditional, since the method depends on the first p values of
the process (Y,).

This model can be generalized to an autoregressive processes with
ezogenous variables. In this case, one has to add as many input units as there
are exogenous variables.

The estimators @ of the parameters are the least squared estimators,
whose properties are well-known : given the assumptions 1)-3), one can prove
that the @ are asymptotically Gaussian. One has

VT@E-a) 3 X0, o251

where T tends to infinity, o2 = Var(e,), and X is the (p x p) autocovariance-
matrix defined by (X);; = Cov(Y, . ;,Y, 4 ;) =7 limjl*

Note : Stationarity of the process (Y,) is essential. If (Y,) is not stationary, it
is necessary to pretreatment the data to remove trends and periodicity.

3 The non Linear Case

A more general model can be expressed by an equation similar to (1), where
the function f is implemented by a multilayer perceptron. Let W € R™
denote the vector of parameters (#, @, B, 8). So we have

(Y pY gy pW)=Fw(Yy Y900 ¥ ))

=p+ f: B; #( iélaji Ye—i+0) ®)

1=1

There are (p+1) input units, k& hidden units with a sigmoidal activation
function ¢, and one output linear unit. It is possible to consider exogenous
variables, corresponding to additional inputs. The learnt wector
W = argmin(S(W)) is the least square estimator of W.
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4 The Methodology

We would like to find a model which is as parsimonious as possible. Simple
models offer robustness, ease of interpretation, and facilitate computations.
Many problems are to be solved :

Problem 1 : What is the most convenient method for learning, i.e. for
minimizing the error function ?

Problem 2 : How to initialize the weights and the architecture ?
Problem 8 : How to compare two models, how to measure the model
quality ?

Problem 4 :How to eliminate the non significant weights so as to decrease
the number of parameters 7

1) - First, we choose a second order method, (like BFGS or Levenberg-
Marquardt methods),([Luen], or in a neural context [Fomb]) for their
reliability and their rapidity. A significant advantage of the method is that it
produces the inverse of the Hessian V28 of the error function S(W) at the
minimum W, as a sub-product.

2) - To initialize the network, we start with one input unit, one hidden unit
and all zero weights, except for the pu parameter which is set equal to Y.
Then we progressively add units to the input and hidden layers, computing
at each step the modified estimator of the variance. The process is continued
as long as this estimator decreases significantly .

3) - The quality of a neural model is typically evaluated by measuring for the
performance of the network when it is tested on data (the test set). This can
be a good performance evaluation method, but if and only if the test set is
representative of the learning set.

We propose to use as in time series one or other Akaike information
criterion statistics, the AIC or BIC criterions :

SW)  am

AIC = Log — -+ or BIC = Log S(;:V)+m L;gT

Both criterions contain a penalty term, which gives a cost to any
supplementary parameter.

4) - The more interesting aspect of the statistical point of view adopted here
is that it is possible to know the asymptotic distribution of the least squared
estimator of W.

Very recent results by Doukhan and Tsybakov ([Douk]) permit one to
deduce that the least squared estimators are asymptotically Gaussian (when
T—00) as in the linear case, due to the boundness property of the function ¢.
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In fact, when T'—o0, one has

VTW-w) 2 x_0,0257Y)

where o2 is the residual variance, estimated by S (W) /T , and X the Hessian
matrix of the error function S(W), multiplied by (—1/2T), and estimated
by (—1/2T)V2S(W). So for each weight parameter w;;, it is possible to
build an approximate (1 — a) - confidence interval.

4 Weight Elimination

From these results, we propose a new learning algorithm to eliminate the non
significant weights. This algorithm is not sensitive to the order of magnitude
of the input data, as the Weigend et al. [Weig] algorithm, which eliminates
the “small” weights, though does not offer a quantitative measure of
“smallness”.

The algorithm is a backward stepwise method :

1) - Learning is initialized with an appropriate simple architecture.

2) - All the quotients @;;/5(w;;) are computed (test statistic of “w; ;=0
against “w,; #0” )

3) - Weight elimination corresponding to the minimum value of this
quotient is attempted, as long as it is smaller than a typical value, say 2.
Starting from the weights of the network N, the learning is repeated, and
leads to a new network N.

4) - If N’ is poorer than N according to the BIC criterion, then N is kept,

otherwise, step 2) is repeated.

Note : Since the approximate variance of the vector W is known, it is
possible to test several weights simultaneously.

5 Examples of the Weight Elimination Method

5.1 Application to the Sunspots Activity Data

The SUNSPOTS series gives the annual activity of sunspots since from 1700.
These nonstationary series are classically used to compare and evaluate the
statistical modelling and forecasting methods. We take the dataset 1700-1920

as training set. The 1921-1935 data can be used as a test set. We compare
two classical models and five neural models. See also [Groo)], or [Ginz).
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Model Number of Residual BIC
parameters variance
(4) 4 206 5.43
(B) 9 195 5.50
(9 31 112 5.47
(D) 25 123 5.43
(E) 19 125 5.30
(F) ) 13 170 5.46
(G) 13 135 5.24

The classical models (A) and (B) that we use are among the best ARIMA
models (let B be the lag operator) :

(A) : Model AR(1,2,9): I —ay,B~0a,B? —0gBY)X, = p+e,
(B) : Model ARIMA(1,2,3,4,8,9)(11)(11) :
(I - B )(I — ;B — ayB% — 03 B3 ~ a,B* — agB® + ayB%) X, = p+ (I — BB)e,

For the first four neural models, the input vector is only
(X, _1»X; -2 X;_3X,_4) and the number of hidden units is decreasing
from 5 to 2. The notation RN(n,k,s) is for a neural network with n input
units, k hidden units and s output units. They are : (C) : Model RN(4,5,1),
(D) : Model RN(4,4,1), (E) : Model RN(4,3,1), (F) : Model RN(4,2,1).

For the last neural model, the input vector is (X, _,X,_4,X, _,X;_17)
(the inputs are chosen according to the lags used in the best ARIMA model),
with two hidden units : (G) : Model RN((1,2,9,11),2,1).

For the SUNSPOT series, the neural model is the best, as well for the
residual variance, (model (D)), than for the BIC criterion (model (G)). For
the results on the test set, the model (A) gives a residual variance 214,
instead of 129 for the neural model (D), for example.

5.2 Progressive Weight Elimination

We apply the weight elimination algorithm of Section 4, to the model (D)
with 4 hidden units. All the connections leading to the 4" neuron of the
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hidden layer are not significant. The analysis of the activity of the three
hidden neurons in model (E) shows that the non linear parts of the sigmoidal
functions are used, and that each neuron makes a distinct contribution to the
performance of the network.

5.3 Simulated Examples

We have built artificial series to systematically study the weight elimination
method. For a given architecture W, and its associated function fy,, we set
Y,=fw(¥;_y...)+¢€, where Y, _,,... are some previous values of Y, k is
the number of hidden units according to the definition of the network, and ¢,
is a white noise with o2 variance Then, we consider a network with more
input and hidden units than were used in the network that was used to
simulate the data. We trained the network by applying the weight
elimination method. In each case, the method leads to a network y\vhose
architecture is the same as the artificial one. The estimated weights W are
close to the weights W, and the estimated residual variance is a very accurate
estimation of o2 .

6 Conclusion

The proposed method works very well on relatively small examples. We
are now applying it to the EDF series of the daily electricity consumption in
France.

Other theoretical questions are of interest. First, we are studying the
transposition of the ARIMA models to neural networks with additional input
units used to feedback selected error terms. In this case, backpropagation is
not mathematically justified. Other minimization methods are required and
for these one must derive the asymptotic distribution of the estimators, as in
the case of feed-forward networks. We are also trying to characterize the non
linear series which can be generated by such architectures. Finally, the n-step
forecasting problem is difficult to treat with a neural network, due to the
possible existence of several fixed points for the recurrence equation which
defines the model, some of which are attractive, while others are repulsive. In
this matter, we do the same observations than Yao and Tong [Yao] do in
another context.

REFERENCES

[Box] BOX G.E.P.,JENKINS G.M., Time Series Analysis,
Forecasling and Control,Holden-Day, San Francisco (1970).

[Cott] COTTRELL M., GIRARD B., GIRARD Y., Réseaux de
neurones et Séries Temporelles, XXIV Journées de Statistiques,

ASU, Bruxelles (1992).

163



ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 157-164

[Cybe]

[Dou]
[Fomb)]
[Ging]
[Groo]
[Horn%]

[Horn®]

(Lape]

[Luen]
[Varf]

[Weig]

[Yao]

CYBENKO G., Approximation by Superposition of a Sigmoidal
Function, Math. Control Signal Systems, Vol. 2 (1989).
DOUKHAN P., TSYBAKOV A., Non-linear ARMA-models :
Probabilistic properties and consistent recursive estimation,

. Preprint Université Paris-Sud, URA 743 (1992).

FOMBELLIDA M., DESTINE J., Méthodes heuristiques et
méthodes d’optimisation non contraintes pour Papprentissage

des perceptrons multicouches, Actes Neuro-Nimes - 1992.

GINZBERG 1., HORN D., Learning the rule of a time series,
Int.J. of Neural Systems, Vol. 3, N2, pp 167-177 (1992).

GROOT C., WURTZ D., Analysis of Univariate Time Series
with Connectionnist Nets : A Case Study of Two Classical
Examples, Proceedings of the Munotec Workshop - Dublin,
Dec 1990 and Neurocomputing (in press).

HORNIK K., STINCHCOMBE M., WHITE H., Multilayer
Feedforward Networks are Universal Approximators, Neural
Networks, 2, pp. 359-366 (1989).

HORNIK K., Approximation capabilities of multilayer
feedforward networks, Neural Networks, 4, (1991).

LAPEDES A.S., FARBER R., Nonlinear signal processing using
neural networks : Prediction and system modeling, Los Alamos
National Laboratory Technical report, (1987).

LUENBERGER D., Intr. to linear and nonlinear programming,
Addison-Wesley (1973).

VARFIS A., VERSINO C., Univariate Economic Time Series
Forecasting by Connectionist Methods, INNC - Paris (1990).

WEIGEND A.S., HUBERMAN B.A., RUMELHART D.E.,
Predicting the Future : a Connectionist Approach, Int. J.
Neural Systems, Vol.1, n°3 (1990).

YAO Q., TONG H., Quantifying the influence of initial values
on nonlinear prediction, Technical report #UKC/IMS/592/5¢,
University of Kent, U.K. (1992).

164





