ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 171-176

SUPERVISED LEARNING AND
ASSOCIATIVE MEMORY BY THE
RANDOM NEURAL NETWORK

M. Mokhtari

Ecole des Hautes Etudes en Informatique, Université René
Descartes, 45 rue des Saints Péres, 75006 Paris, France

Abstract The Random Neural Network model with positive and negative
neurons is studied as an autoassociative memory for pattern recognition. We
first apply the learning algorithm for the recurrent random network model
(Gelenbe 91) to the recurrent random network with positive and negative
neurons. Then, we implement this learning algorithm for a particular case of
network. We also present a fast recognition algorithm based on model
properties and which give a very good performance for digit recognition.

1. Introduction

In [1,2], a random neural network model has been introduced. A neuron can excite its
neighbours if it emits positive signals or can inhibit them by emission of negative
signals, and all neurons are of the same type. The model has.been extended in [3] by
giving a sign to each neuron. Here we consider this model. According to [3], there is
accumulation of positive signals at positive neurons and negative signals at negative
neurons. Neuron potential is the number of accumulated signals. The arrival of a
positive signal to a positive neuron adds 1 to its potential, whereas it reduces by 1
that of negative neuron or has no effect if the neuron potential is already zero.
Symmetrically, the arrival of a negative signal to a negative neuron adds 1 to its
potential, whereas it reduces by 1 that of positive neuron or has no effect if the neuron
potential is already zero. When the potential of a neuron 1 is strictly positive, the
neuron is said to be excited, so it can emit signals at random intervals with
exponential interfiring times of constant rate r(i). A signal which leaves a positive
neuron i heads for neuron j with probability p*(i,j) as a positive signal, or p~(i,j) as a
negative one. Symmetrically, a signal which leaves a negative neuron i heads for
neuron j with probability p*(i,j) as a negative signal, or p~(i,j) as a positive one.
External positive (respectively negative) signals arrive to the i-th positive
(respectively negative) neuron according to a Poisson process of rate A(i) (respectively
A(D). Let k(t) be the vector of neuron potentials at time t, and k=(kq,...kp) be a
particular value. It is proved in [2] that, if all the steady state excitation probabilities
q; are such that 0<qj<1, the stationary probability distribution of the network's state

given by p(k)=lim (_»..P[k(t)=k] exists and can be expressed by: p@):Hni:l(l-qi)qiki.
The q; are computed from the following system of non-linear equations (1-3) where P
(respectively N) is the set of positive (respectively negative) neurons:

G = YO/ @+y @) ifie P, qi=y @)/ @+yr@] ifie N (1)

171

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 171-176

with: yHG)
Y ®

A@D + Zjep qr@p*GD + ZieN 4@ GD @
Q) + Zjep GIOPG) + TjeN ¢ TOP*GD ®

H

In recent papers [4,5,6,7], we have shown that the random neural network model
with positive neurons and negative neurons can efficiently work as an auto-associative
memory whatever the correlation between the stored patterns and the pattern to be
recognized. The Hopfield architecture for the network and the Hebbian rule for learning
have been chosen. Here, we use a supervised learning based on gradient descent of a
quadratic error function. This learning method has been presented by Erol Gelenbe [8]
for the recurrent (i.e. general) random network model. We first apply it to the recurrent
network with positive and negative neurons, and then use it as a particular case for a
network with only 2 layers. The network is then tested for the digit recognition.

2. Learning with the recurrent random network model with
positive and negative neurons

In what follows, we take Gelenbe’s notations in [8] in order to apply its learning
algorithm to the random neural network with positive and negative neurons. This

algorithm is used for choosing the network parameters (i), p*(@,j) and p=(i,j) in order
to learn a given set of K input-output pairs (1,Y) where the set of successive inputs is
denoted t= {1q,...,Ag} and y=(Ag,Ag) are pairs of positive and negative signal flow
rates entering each neuron: Ag=(Ag(1),....Ax(M)), Ax=(Ax(1),...,Ak(n)). The successive

desired outputs are the vectors Y= {y].....ygJ, where each vector yg={y1k,--¥nk}
whose elements y;ie [0,1] correspond to the desired values of each neuron. The
network approximates the set Y such that the cost function Ex=(1/2) Zni:lai(Qik'Yik)
is minimized, where a; is the contribution of neuron i. Let us write

wHAj=r(p*(ij) 20, w(ij)=rDp @) 20, 1()=Z; [Wr@.)+w (ijl, and

ifie P N@=A® + Zje p 4 1OP*GD) + Zje N 4 1Op G0

D@)=r() + M) + Zje p 1O G + ZjeN & 1P 6D,
ifie N N@=A0) + Zje p 4 r@p°G) + ZieN 9 rG)p*G.D)
D(@=r(i) + A(D) + Zje p 4 rOP* (D) + Zje N 41O D,
then (1) becomes ¢;=N@{)/D{), @)

The algorithm lets the network learn both n by n matrices W= {wt(i,j)} and
W= {wi(ij)} by computing for each input 1 =(Ag,AK), a new value Wy and Wy
of the weights matrices, using gradient descent. Let us denote by the generic term
w(u,v) either w(u,v)=w™(ua,v) or w(u,v)=wT(u,v). The rule for weight update may be
written as : wi(u,v)=wy_1(u,v) N 221 25 @ik-yik) [0gi/0w(u,v)lk (%)
where 1 is some constant, and :

(i) gjk is calculated using the input y; and w(u,v)=wy._1(u,v), in equation (4),

(ii) [0qj/ow(u,v)]i is evaluated at the values g;=qjj and w(u,v)=wi_1(u,v).

In order to compute [9g;/0w(u,v)], we turn to the expression (4), from which we
derive the following equation :

172

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 171-176

if ie P : agy/ow(u,v)=Z; 3gyaw(u,v) [(1[je P wHG.) + 1lje Nl w'Gii))
-(1(je P} w~(j,i) + 1[je N1 w*(,i))q; 1/ D@)
-1[u=i] qi/D() + 1[w(u,vV)=w*(u,i)] (1[ue P] -1[ue N1g;)q/D()
+1[w(u,v)=w"(u,i)] (1[ue N] - 1[ue P]qi)qu/D(i)

ifie N : aqilaw(u,v)=2j aqj/aw(u,v) [(1[je N1 w*(.,i) + 1[je P] w(,i))
- (1[je N1 w=G,i) + 1[je P1 w*(,))q; 1/ D()
-1[u=i] qi/D@) + 1[w(u,v)=w*(u,)] (1[ue N] -1{ue Plq;)qy/D()
+1[w(u,v)=w(u,D] (1[ue P] - 1[ue Nlg;)q,/DG@).

aqi/ow*(u,v)= X; dq/ow(u,v) WG.i) + vFiu.viay
We can write : (6) {
aq;/ow~(u,v)= Ej aqj/aw(u,v) WG + viu,v)gy

where Y*;(u,v), Yj(u,v) and W(j,i) are for i,j=1,...,n:
ifie P: W(,i) =[wt(§i(AjeP] - 1[je Nlqp) + w-(,))1je N] - 1[je Plqy) /D)
v¥i(u,v) = -1/D@) if u=i, v#i
= (1[ue P] - 1[ue N1q;)/D() if v=i, u#i
= 0 for all other values of (u,v)
Yi(wv) =-1/D() if u=i, v#i
= (1[ue N] - 1[ue P1qy)/D() if v=i, u#i
= (1+q;)/D() if u=i, v=i
= 0 for all other values of (u,v)

ifie N: WG, =[w(,)(LeN] - 1[je Plgp + w (,D(1[je P] - 1[je Nlgp) I/D()
v*i(u,v) = -1/D3) if u=i, v#i
= (1[ue N] - 1[ue Plq;)/D(@) if v=i, u#i
= 0 for all other values of (u,v)
Yi(o,v) =-1/D@) if u=i, v#i
= (1[ue P] - 1[ue N1q;)/D(@) if v=i, u#i
= -(14q;)/D() if u=i, v=i
= (for all other values of (u,v).

The learning algorithm for the network is as follows:

- initialize the matrix W+ and W-(in some apropriate manner.

- choose a value of the learning rate 1 in (5).

(i) For each successive value of k, starting with k=1, proceed as follows. Set the
input values to 1k=(Ak,Ak).

(ii) Solve the system of non-linear equations (4) with these values.

(iii) Solve the system of non linear equations (6) with the results of (ii).

(iv) Using (5) and the results of (ii) and (iii), update the matrices Wy and W.

173

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 171-176

3. Random neural network as an auto-associative memory
3.1. Network architecture and parameters

Realization of an auto-associative memory consists of learning a set of patterns and
making the network recognize them, even if they are noisy. In this last case, the
recognition means pattern reconstruction. Let us suppose we have K patterns of

dimension n, and note the set by X={x1,...,xK}, where xk={x1k,...,xnk}, with X €
{-1,1}, and Xk is the kth input of neuron i. So, n neurons are necessary for the input

layer. We also take n neurons for the output layer. The network architecture is given
by Fig. 1 where n=6 for exemple.

M1 AQ) A3) A4) MS) A(6)

Fig. 1. Network architecture

When a pattern X is applied as input to the network, it characterizes network neurons
as positive or negative : if xik='-1' then ie N, k(i):kk(i) and A(D)=0; if xik='l' then

ieP, A(i)=Ak(i) and A(i)=0. We take the following assumptions: kk(i)=Ak(i)=100()

for ie Layer 1 such that all the input neurons are saturated (qik>1; if qik>1 set qik=1);
and r(j)=r(i) for ic Layer 1 and je Layer 2. Let us remind that r(i)=Zj[w+(i,j)+w'(i,j)]
for ie Layer 1 and je Layer 2.

3.2. Learning algorithm

Following the previous assumptions, whatever the input X, we have for the input
layer Layer 1 : 9= lk(i)/r(i) =1ifie N and 9= Ak(i)/r(i) = 1if ie P. So we have

dq;/0w(u,v)=0 for ic Layer 1 (with ue Layer 1 and ve Layer 2). The system of non
linear equations (6) is then simplified to

dg;/ow*(u,v)= y*i(u,v) and 9q;/ow (u,v)=Yj(u,v) forie Layer2 ¢
where v+;(u,v), Y';(u,v) are:

174

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 171-176

ifie P: v¥i(u,v)= -qy/D(@) if u=i, v#i
= (1[ue P] - 1[ue N]qp)/D() if v=i, ui
= (1-q;)/D() if u=i, v=i
= 0 for all other values of (u,v)

Y v)= -gi/D@) if u=i, vi
= (1[ue N] - 1[ue P]q;)/D() if v=i, ui
= -2q;/D() if u=i, v=i
= 0 for all other values of (u,v)

ifie N : Yi(u,v)= -qy/D() if u=i, v
' = (1[fue N] - 1[ue P]q;)/D() if v=i, uzi
= (1-q/D(i) if u=i, v=i
= Q for all other values of (u,v)

Yi(u,v)=-q/D@) if u=i, v
= (1{ue P] - 1[ue N1q;)/D() if v=i, u#i
= -2q;/D() if u=i, v=i
= 0 for all other values of (u,v)

The learning algorithm is described following the four steps from (i) to (iv) of section
2. In the cost function Ey we take a;=1 for i€ Layer 2 since every neuron contributes
to the error cost, and the desired output Yik is always set to 1 since all neurons must
be excited (qyj close to 1) for each x; e X. Let us denote by a the minimal g; value
on all neurons and all stored patterns once the learning stage is achieved: xy=
min1 <k<K (min1 <i<p dik)- This value which is close to 1 defines the storage
threshold. It will be useful for the recognition stage.

3.3. Recognition algorithm

When the learning stage is finished, each pattern x to be recognized is coded as: for
1<i<n, if xj=1, then ie P, A(i)=1000 and A(i)=0; if x;=-1, then ie N, A(i)=1000 and
A(D)=0. After computing the g;, the x recognition is defined as follows: if the

computed q; are such that q;>0) for 1<i<n, the pattern x is a stored one otherwise it
is noisy: the corrupted components correspond to low q; values (inhibited neurons).
Then, the components whose g value is minimal are certainly corrupted (others can
exist). So, we start to correct these errors by this threshold function: if g;=ming then
yi=-Xi else yj=x{, where minq is the minimal g; value. We reinject this output Y to
the system which then becomes a new input x. After computing g;, if ;2o for

1<i<n, then x is corrected. If not, we correct again certain components of x as before,
efc.. We stop x injection when the reinjection number is larger than n by the maximal
supposed noise rate, because at worst there is only 1 correction per pass. Then, x will
be the closest xj version.

175

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 171-176

4. Results

The recognition has been applied to the 10 decimal numerals shown in Fig. 2. Each
digit is coded on 64 (8 by 8) components (so n=64 for Layer 1 and for Layer 2).

04 2435783

Fig. 2. The ten digits used for learning
For the learning stage, we have taken n= 0.2 in the cost function Ey and we have

initialized the matrices W+ and W at random with small values between 0 and 1.
Weights have been modified so as to decrease the cost function Ey until 0.0032. We
have corrupted the input patterns by a noise rate which could reach 20%. A

recognition test was considered successful if the output exactly corresponds to the
digit we want to recall. Recognition performance is given by Fig. 3.

i

i 2 3 4 5 6 7 8
k : number of stored digits

S

| 100

¢ ! MW 0%
c f 50 B 0%
‘;’ e - B =15%
B

9 10 #E &20%

Fig. 3. Recognition performance as a function of the number of stored digits and the
noise level

Almost all patterns whose noise rate d is less than or equal to 15% are recognized,
whatever the number of stored patterns. Even for an important noise rate (d=20%), the
recognition is good.

References

1. E. Gelenbe: Random Neural Networks with negative and positive signals and
product form solution. Neural Computation, Vol. 1, No. 4, 502-510 (1989)

2. E. Gelenbe: Stability of the Random Neural Network Model. Neural
Computation, vol.2, No. 2, 239-247 (1990)

3. E. Gelenbe, A. Stafylopatis, A. Likas: Associative memory operation of the
Random Network Model. Proc. of Int. Conf. on Artificial Neural Networks
(ICANN 91), Helsinki, 307-315 (1991)

4. M. Mokhtari: Recognition of schematic images by the Random Neural Network.
Proc. of International Collog. on Parallel Image Processing, Paris, 205-211 (1991)

5. M. Mokhtari: Storage and recognition methods for the Random Neural Network.
Neural Networks: Advances and Applications II, E. Gelenbe (Editor), North-
Holland, 155-176 (1992)

6. M. Mokhtari: Pattern Recognition with the Random Neural Network. Proc. of
Int. Conf, on Artificial Neural Networks (ICANN92), Brighton, 1211-1214 (1992)

7. M. Mokhtari: The Random Neural Network with some saturated neurons for Auto-
associative memory. Proc. of International Symposium on Computer and
Information Sciences (ISCIS VII), Antalya, 585-588 (1992)

8. E. Gelenbe: Leamning in the Recurrent Random Neural Network, Neural Networks.
Advances and Applications II, E. Gelenbe (Editor), North-Holland, 1-12 (1992).

176

