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Abstract. To this date, the most successful approaches to learning have
been either the back-propagation or gradient descent method. Although very
powerful on relatively simple problems, theoretical analysis and simulations
show that these approaches break down as soon as sufficiently complex prob-
lems are considered. To overcome this fundamental limitation, we suggest
a hierarchical and modular approach, directly inspired from biological net-
works, whereby a certain degree of structure is introduced in the learning
system. This approach is applied to a simple example of trajectory learning
of a semi-figure eight. The ideas involved, however, extend immediately to
more general computational problems.

1. Introduction

Learning is a fundamental ability of biological systems. Understanding its prin-
ciples is also key to the design of intelligent circuits and computers. To this
date, the most successful approach to learning, from an engineering standpoint,
has been the back-propagation approach(7] or gradient descent approach. In this
framework, in the course of learning from examples, the parameters of a learning
system, such as a neural network, are adjusted incrementally so as to optimize
by gradient descent a suitable function measuring the performance of the sys-
tem at any given time. Although very powerful on relatively simple problems,
theoretical analysis and simulations[3,4] show that this approach breaks down as
soon as sufficiently complex problems are considered. Gradient descent learning
applied to an amorphous learning system is bound to fail. To overcome this -
fundamental limitation, we are suggesting a hierarchical and modular approach
whereby a certain degree of structure is introduced in the learning system.
Consider the problem of synthesizing a neural network capable of producing
a certain given non-trivial trajectory. To fix the ideas, we can imagine that the
model neurons in the network satisfy the usual additive model equations[5)
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The learning task is to find the right parameter values, such as the synaptic
weights wy;, the charging time constants 7; and the amplifiers gains, so that the
output units of the network follow a certain prescribed trajectory u*(¢) over a
given time interval [to,;]. For instance, a typical benchmark trajectory in the
literature is a circle or a figure eight. Networks such as (1) have been successfully
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trained on figure eights using a form of gradient descent learning for recurrent
networks[6,8). Consider now the problem of learning a more complicated tra-
jectory, such as a double figure eight. Although the task appears only slightly
more complicated, simulations show that a fully interconnected set of units will
not be able to learn this task by indiscriminate gradient descent learning on all
of its parameters. Thus a different approach is needed.

2. Modular Hierarchical Approach

Biology seems to have overcome the obstacles inherent to gradient descent learn-
ing through evolution. Learning in biological organisms is never started from a
tabula rasa. Rather, a high degree of structure is already present in the neural
circuitry of newly born organisms. This structure is genetically encoded and the
result of evolutionary tinkering over time scales several times larger than those
of continental drift. Little is known of the interaction between the prewired
structure and the actual learning. One reasonable hypothesis is that complex
tasks are broken up into simpler modules and that learning, perhaps in differ-
ent forms, can operate both within and across modules. The modules in turn
can be organized in a hierarchical way, all the way up to the level of nuclei or
brain areas. The difficult problem then becomes how to find a suitable module
decomposition and whether there are any principles for doing so. One trick used
by evolution seems to have been the duplication, by error, of a module together
with the subsequent evolution of one of the copies into a new module somehow
complementary of the first one. But this is far from yielding any useful princi-
ple and may, at best, be used in genetic type of algorithms, where evolutionary
tinkering is mimicked in the computer.

We have taken inspiration from these ideas, to tackle the problem of learning
specific complex trajectories in a neural network. Although it is difficult at this
stage to keep a close analogy with biology, it may be useful to think of the
problem of central pattern generation or motor control in natural organisms. In
order to construct a neural network capable of producing a double figure eight,
we are going to introduce a certain degree of organization in the system prior
to any learning. The basic organization of the system consists of a hierarchy of
modules. In this particular example, each module can be viewed essentially as
an oscillator. The modules, in turn, are organized in a hierarchical way. For the
time being, all the modules within one level of the hierarchy control the output
of the modules located in the previous layer.

At the bottom of the hierarchy, in the first level, one finds a family of simple
and possibly independent modules, each one corresponding to a circuit with a
small number of units capable of producing some elementary trajectory, such
as a sinusoidal oscillation. In the case of the additive model, these could be
simple oscillator rings with two or three neurons, an odd number of inhibitory
connections and sufficiently high gains[1,2]. Thus, in our example, the first level
of the hierarchy could contain four oscillator rings, one for each loop of the target
trajectory. The parameters in each one of these four modules can be adjusted,
e.g., by gradient descent, in order to match each one of the loops in the target
trajectory.

The second level of the pyramid should contain two control modules. Each
one of these modules controls a distinct pair of oscillator networks from the
first level, so that each control network in the second level ends up producing
a simple figure eight (see Fig. 1). Again, the control networks in level two can
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be oscillator rings and their parameters can be adjusted. In particular, after
the learning process is completed, they should be operating in their high-gain
regimes and have a period equal to the sum of the periods of the circuits each
one controls.

Finally, the third layer, consist of another oscillatory and adjustable module
which controls the two modules in the second level so as to produce a double
figure eight. The third layer module must also end up operating in its high-gain
regime. In general, the final output trajectory is also a limit cycle because it is
obtained by superimposition of limit cycles in the various modules. If the various
oscillators relax to their limit cycles independently of one another, it is essential
to provide for adjustable delays between the various modules in order to get the
proper harmony among the various phases. In this way, a sparse network with
20 units or so can be constructed which can successfully execute a double figure
eight.

It is clear that this approach which combines a modular hierarchical archi-
tecture together with some simple form of learning can be extended to general
trajectories. At the very least, one could always use Fourier analysis to de-
compose a target trajectory into a superimposition of sinusoidal oscillations of
different frequencies and use, in the first level of the hierarchy, a corresponding
large bank of oscillators networks. One could also use damped oscillators to per-
form some sort of wavelet decomposition. Although we believe that oscillators
with limit cycles present several attractive properties (stability, short transients,
biological relevance...), one can conceivably use completely different circuits as
building blocks in each module.
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Fig. 1: Symbolic representation of a modular and hierarchical network
for double figure eight.

The modular hierarchical approach leads to architectures which are more
structured than fully interconnected networks, with a general feedforward flow of
information and sparse recurrent connections to achieve dynamical effects. The
sparsity of units and connections are attractive features for hardware design;
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and so is also the modular organization and the fact that learning is much more
circumscribed than in fully interconnected systems. However, fundamental open
problems remain in the overall organization of learning across modules and in
the origin of the decomposition. In particular, can the modular architecture be
the outcome of a simple internal organizational process rather than an external
imposition and how should learning be coordinated in time and across modules
(other than the obvious: modules in the first level learn first, modules in the
second level second,...)? How successful is a global gradient descent strategy
applied across modules? How can the same modular architecture be used for
different trajectories, with short switching times between trajectories and proper
phases along each trajectory?

3. Example of Numerical Simulations

The new learning paradigm, presented in the preceding section, has been applied
to the problem of learning a figure eight trajectory. Results referring to this
problem can be found in the literature[6,8].

In this work we assumed that the desired trajectory of a semi-figure eight
is composed of two circles and given by:

Dy = Cy [210+ cos(t)] + (1= Cy)[yr0 — cos(t)] (2a)

Dy = Cy [zg0+sin(t)] + (1 Ci)lyzo + sin(t)] (2b)

in which C} is a square wave with a period of 4, given by the following equation;
C) = sign[sin(t/2)] 3)

and 10, Z20, Y10, Y20 are the coordinates of the center of the left and right circles
respectively. Plotting D; vs. Dp will produce the desired semi-figure eight, as
shown in fig. 3.

The basic module of the hierarchical approach for this trajectory is a simple
oscillatory ring network with four neurons. The activation dynamics of each unit
in the module is given by:

du; u; )
-at—'=—;_f+wi—1Vi—1 i=1,---,4 (4)

where Vi = V4 and V; is the output of neuron ¢ given by;
Vi = tanh(y; u;) (5)

An odd number of inhibitory connections is required for stable oscillations (Atiya
and Baldi 1989). At this stage for simplicity, we assume that w; = w for i =
1,34, w3 = —wand ; = 7,9 = v for i = 1,---,4. The module is trained
to produce a circle through a sinusoidal waive with period of 27. Following the
analysis in Atiya and Baldi 1989, the initial value of the network parameters, i.e.,
w, 7 and 7 are set to one at the beginning of the learning procedure. To update
the network parameters, a gradient descent algorithm based upon the forward
propagation of the error is used[9]. After the training, the network parameters
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converge to the following values, w = 1.025,7 = 0.972 and v = 1.526. With
these values, after a brief transition period, the module converges to a limit
cycle where each unit has a quasi-sinusoidal activation. The phase shift between
two consecutive neurons is about 7/4. Therefore, plotting the activity of neuron
1 and 3 in the module against each other will produce a circle which is close to
the desire one as illustrated in Fig. 2.

At the second level of the hierarchy is the control module. This module
is also chosen to be a simple oscillatory ring network with four neurons. This
network is operating in the high gain regime and its period is twice that of the
basic modules, i.e., 4. The network parameters at the beginning of the learning
are set to w = 0.9,y = 10, and 7 = 2.58.
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Fig. 2: Desired circle (solid line) and the one produced by the basic
module in the first layer (dashed line).
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Fig. 3: Desired semi-figure eight (solid line) and the one produced by
the network (dashed line).
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The overall network has two output at any time, Z; and Z3. Their value is
given by:

Zy =05{{1+VCQ)] [z10+ VN1(1)] + [1 = VC()] [y10+ VNI(3)]} (6a)

25 = 05{[1 + VO] [e20 + VN2D)] + [L= V()] [yo + VN2(3)} (65)

in which VN'1(3) and V N2() are the output of i** neuron in the first and second
modules in the first level of the hierarchy, respectively, where V C(1) is the output
of the first neuron in the control module. Figure 4 shows the semi-figure eight
obtained be plotting Z; vs. Z3.

4. Conclusion
In conclusion, a new hierarchical approach for supervised neural learning of time
dependent trajectories is presented. The modular hierarchical methodology leads
~ to architectures which are more structured than fully interconnected networks,
with a general feedforward flow of information and sparse recurrent connections
to achieve dynamical effects. The sparsity of the connections as well as the
modular organization makes the hardware implementation of the methodology
_very easy and attractive. This approach has been applied to an example of
trajectory learning of a semi-figure eight.
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