ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 189-194

Locally implementable learning
with isospectral matrix flows. !

Jeroen Dehaene? and Joos Vandewalle,
Deptartment of electrical engineering, ESAT-SISTA,
K.U.Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium
e-mail: dehaenej@esat.kuleuven.ac.be

Abstract

We describe a time continuous uniform learning algorithm, that can be
implemented on a network structure, in a way that is related to Hebbian
learning. On a local scale, the weight h; ; of each connection between nodes
i and j obeys the same law, using information, available in nodes i and 7
This information is either supplied externally, or obtained by propagation
of information over the network in neural network style. On a global
scale, the weight matrix follows an isospectral matrix flow (preserving
the eigenValues), directed by an external teaching signal, supplied to the
nodes. The weight matrix converges to an instantiation, useful for Hopfield
type and related neural networks, stabilizing all (and only those) binary
patterns in a subspace described by the teaching signal.

1. introduction

An important general idea in neural network research is the idea of computing
with a dynamical system with on a local scale (neurons, weights) simple and
often uniform behavior, all elements evolving by the same law using information
available through the network, and resulting in some interesting global behavior
such as memory on a global scale.

In our case the global behavior is an isospectral matrix flow, a dynamical system
with a matrix state, H € R"*" (n is the number of nodes or neurons), which
preserves its eigenvalues, during evolution. An external time varying signal
p(t) : R — R" is supplied to the system. If p(t) evolves in a subspace P
of R"* (and doesn’t settle in a smaller subspace), the principal eigenspace of
H converges to P, under initial conditions specified below. The flow can be
applied to neural network learning, and can be useful for other applications
where directional information is to be extracted from a signal p(t).

On a local scale, the system can be implemented on a network structure in
the following sense. The matrix entries are stored in the connections of the
network, by storing entry h; ; in the connection between node i and node J, like
the weights of a fully interconnected Hopfield network. The entries of a time
varying vector p are supplied to the nodes, entry p; to node i. Other vectors can
be obtained in the nodes by propagating a vector over the network. That is, if
a vector z is available in the nodes, the vector Hz can be obtained as follows.

1This research work was carried out at the ESAT laboratory of the Katholieke Universiteit
Leuven, in the framework of a Concerted Action Project of the Flemish Community, entitled
Applicable Neural Networks. The scientific responsibility is assumed by its authors.
2Research assistant of the Belgian National Fund for Scientific Research.

189

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 189-194

Each node i sends z;h;; over its connection to j. By summing all incoming
information, a node j can calculate the j-th component of Hz. To realize the
matrix flow, each matrix entry h;; evolves according to the same fixed law, of
the form h;j = 3, akzgk)yf-k), where z(%) and 1{¥) are vectors available at the
nodes and oy are coefficients. In matrix notation we obtain

H=Y ara®y®r (1)
k

We concentrate on time continuous formulations, because of the elegant the-
oretical framework and because of the attractivity of analog implementations.
However, we don’t claim the presented work is ready for analog implementation.
We also discuss discrete implementation.

- 2. Theory

2.1. a special case of the double bracket flow
Consider the matrix flow

H= HzppT - 2prTH +ppTH2 =rpT - 24'1T + P"T 2)
where ¢ = Hp and r = Hq = H?p. This flow is clearly of the form (1).
It is a special case of the double bracket flow {1], with time varying parameter
N = ppT, ,
H=[H,[HN] ()
where N € R™*" is symmetric, and. [X,Y] = XY — Y X denotes the matrix

bracket. The global behavior of the double bracket flow is determined by three
main properties.

1) The flow is isospectral. This means that during evolution of H its eigen-
values (spectrum) remain constant. The matrix H(t) can be decomposed as
H(t) = ©(t)AO(t)T, where A € R™*" is a constant diagonal matrix, with the
eigenvalues as its entries, and ©(tf) € R™*" is orthogonal and has the time
varying eigenvectors as its columns. © obeys

6 =[N, H® (4)
It is easy to verify that this implies (3) for the evolution of H, and that ©
remains orthogonal because [N, H] is skew symmetric.

2) When N is constant, the matrix H converges to a matrix H(co), which is
commutable with N, i.e. [H(c0), N] = 0. This means that the eigenvectors of
H and N are the same (or can be chosen so in the case of repeated eigenvalues).

3) When the eigenvectors of H(co) are ordered by decreasing eigenvalues, the
corresponding eigenvalues of N are ordered in the same way.

When N = ppT and time varying, the flow is still isospectral and the principal
eigenvector of H instantaneously turns toward p, the principal eigenvector of N.

190

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 189-194

Although p varies in time, we can still get convergence, if the principal eigenspace
is of the same dimension as a subspace in which p(t) evolves. We can prove the
following theorem [2].

Theorem 1 Consider the system (2). If the piecewise continuous vector signal
p(t) evolves in a k-dimensional subspace P C RN and span({p(t) |t > to}) = P,
for all ty > 0, and if the principal eigenvalue A of Hy has multiplicity k, then
H(t) converges to a matriz H(oo) with the same eigenvalues as Hy and for which
P is the eigenspace with eigenvalue A, if the initial state Hy avoids some thin
manifolds of unstable trajectories.

We can get a picture of what happens, by interpreting equation (4) for the case
N = pp?, giving 0= [ppT, H)O = (pgT — qp”)O©. Instantaneously, each column
§; changes with 6; = (pg” — ¢pT)8;. That is, 6; is rotated parallel to the plane
spanned by p and ¢ in the direction from ¢ to p. Consider for example the case
where H has only two distinct eigenvalues, 1 and 0. Then H is the matrix of
an orthogonal projection. We can choose © (without affecting H) such that
one column §; is parallel to ¢ and the others are orthogonal to q. Then, only
61 changes, towards p, and the whole subspace R(H) onto which H projects,
rotates towards p. (Fig. 1.).

02
. P
62 /4 .

/ 81

i R(H)

a)

q ol
03

Fig. 1. Rotation of the principal eigenspace

From these observations, it is clear that if the principal eigenvalue A of Hg
has multiplicity smaller than k, H won’t converge but will keep adapting to the
current p(t). If the eigenvalue has a multiplicity, greater than k, H will converge,
but the principal eigenspace of H(oo) will depend on the initial state Hp.

2.2 Stabilization of the eigenvalues

For an isospectral flow, deviations from the spectrum (for instance due to an
inaccurate realization) are not restored but result in the (exact) system pre-
serving the new spectrum. This is not only a problem for inaccurate ana-
log realizations, but also for discrete realizations, like H(k + 1) = H(k) +
e[H(k), [H(k), p(k)p(k)T]] where € is some small positive real number. We intro-
duce some extra terms, which ensure the stability of given eigenvalues. Doing so,
the local implementability is lost at first, but will be regained by some further
modifications.

191

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 189-194

Consider the flow _
H=1'(H) (5)

where v(z) and v'(z) = dv(z)/dz are polynomials. The matrix v'(H) has the
same eigenvectors as H but with eigenvalues v/();) instead of A;. During evo-
lution according to (5) the eigenvectors remain constant, and the eigenvalues
follow

A=v'()) A=X1,.000 (6)

which is the (one-dimensional) gradient ascent flow of v(A). It can also be proved
that (5) is the gradient ascent flow of trace(v(H)), as can be easily verified when
H is diagonal.

From (6), it follows immediately that if v()) is upper-bounded, all); converge
(when initial states in an unstable equilibria are excluded) to a local maximum
of v()). Each local maximum is attracted from within the attraction interval
between the nearest left local minimum (or -0o0) and the nearest right local
minimum (or +00).

We can use these ideas to stabilize given eigenvalues for an isospectral flow by
considering .
H =[H,Q]+v'(H) Y]

Since the first term is isospectral the eigenvalues still follow (6), and converge
to local maxima of v(X), from within the attraction intervals described above.
While converging, the contribution of the second term vanishes. Therefore, when
started from an initial state Ho, H converges to the same solution as would be
obtained by H = [H,Q] with as starting point, the equilibrium obtained by
H = v'(H), when started at Ho. For example, if we want to stabilize the
eigenvalues 0 and 1 in (2), we can choose v(A) = —£A%(A — 1), resulting in
v'(H)=-H(H - I)(2H - I).

2.3 Regaining local implementability

The calculation on the network of the powers of H in v/(H) would need some
further sophistication. We can however introduce modifications which reduce
the calculations again to a uniform law of the form (1).

We assume that a new vector s(t), is available in the nodes, which evolves ran-
domly in R*. We now replace the term v'(H) by the term ss7v'(H)+v'(H)ss7,
which is of the form (1). To understand this modification, we consider the lin-
ear symmetric matrix space operation v : X — y(X) = ssTX + XssT. This
operation is positive semidefinite with null space {XeR> | XT =X,Xs=
0}. Therefore, while H = v'(H) performs a steepest ascent of trace(v(H)),
H = y(v'(H)) = ssTv'(H) + v'(H)ssT performs a non steepest ascent. Be-
cause v has eigenvalues 0, the flow wouldn’t necessarily find a local minimum of
trace(v'(H)) if s were a constant vector. It would converge to a point H where
v'(H)s = 0. However, when s keeps varying in R™ and doesn’t settle in a smaller
subspace, v'(H)s can only stay 0 if v'(H) goes to 0. This finally assures again
that the eigenvalues converge to local maxima of v(1). One can also prove that

192

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 189-194

the corresponding attraction intervals for the eigenvalues are unchanged, and
that the combination of the new term +(v'(H)) with isospectral terms, ensures
convergence to the same points as with the term +/(H).

The calculation of the terms ss7v/(H) + v/(H)ssT requires the calculation of
H*s for k up to the degree of v/ (H). We can halve this effort, by replacing these
terms by v1(H)ssT v3(H)+vo(H)ssT v1(H) where v(z) = v;(z)vz(z). This gives
almost the same results. /

Finally, if we omit the noise source and let p take over its role, the only difference
is that p(t) does not span R". However, the principal eigenvalue will still be
stabilized by (7), but deviations of the other eigenvalues are only partly restored.

2.4. Application to learning in neural networks

As mentioned above, the principal eigenvector of H instantaneously turns to-
wards a vector (or pattern) p, available in the nodes. This is interesting behavior
for learning in neural associative memory. Consider for example a piecewise lin-
ear Hopfield type model

z = —z+Ay+b

8
vy = f(=) ®)
where z € R" is the state, y € R is the output b € R" is the external bias,
A € R**" is the symmetric weight matrix and f: RN — RN :

fi(z) = -lifzy< -1
fi(z) = zif-1<z;<1
filx) = lifz;>1

We will first consider b = 0, and later assign a role to b. If a binary output
pattern (with y; = %1) is an eigenvector of the weight matrix with eigenvalue
larger than 1, it is stable. When A changes gradually to make it an eigenvector,
the pattern will even become stable before.

Other dynamical learning rules can be regarded as exploiting the same idea.
For example, in a simple Hebbian learning learning, like A = pp”, the principal
eigenvector of A tends to p, when p is kept constant. However, this method
leads to positive definite weight matrices with a tendency to stabilize many
more patterns than intended.

Another rule,)
A=—(A-2Dpp” - pp" (A - MI))

where A > 1, is related to linear perceptron learning and minimizes ||(Ap— Ap)||2.
Also here there is a tendency to stabilize many more patterns than intended.

With the isospectral flow we can initialize A with k eigenvalues A > 1 and n—k
eigenvalues —7 < 0, and let A follow A = [A, [4, ppT]], or equivalently, from
(A-AD)(A+7I) =0,

A=—~(A=M)ppT (A+7I) = (A+ rD)ppT (A = A]) (10)

193

ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 189-194

which avoids the need of A%p. Note the similarity with (9), for large 7.

If p is a teaching signal, spanning a k-dimensional subspace P of R™, and the
largest eigenvalue of A has multiplicity &, then A converges to a matrix with
eigenvalue A in that subspace and —7 in its orthogonal complement. If /(A —1)
is large enough, the binary patterns in P and no others will be stable. The flow
converges to a variant of a weight instantiation studied in [3] for the related
LSSM model (Linear Systems in Saturated Mode).

The initial value of A can be a diagonal matrix, possibly perturbed by letting
(10) run for a short time with a random p, to avoid initial conditions leading to
unstable equilibria.

A simple realization is reached by a rule H = ppT — Hp(Hp)T, preserving the
eigenvalues 1 and —1 of H (H? = I) and defining A = H + al, where a > 0.

To stabilize the eigenvalues we can add the stabilizing terms, studied in the
previous sections. With a random signal s(t), this also avoids the problems with
special initial conditions.

Numerous modifications can be thought of. We only discussed rules for which
exact results can be proved. However, for an application in neural network
learning, the isospectrality is not at all a necessary property. The main benefit
is that by preserving the negative eigenvalues, the number of spurious stable
states, remains limited. Moreover, a pattern needn’t become an eigenvector to
be stable. With these observations in mind, one could try to find well performing
rules with less exact foundations. One could also implement the learning rule
as taking place simultaneously with the memory operation, but on a slower
time scale. The role of p could then be played by the output y. To learn a new
pattern, y can be forced to it, by supplying a strong bias b. The system adapts to
make b unnecessary for the stabilization of the pattern. If during operation, the
system remains most of the time at or near an equilibrium, the memory contents
wouldn’t be destroyed by the constant presence of the learning mechanism.

References

1. R.W. Brockett, “Dynamical systems that sort lists, diagonalize matrices, and
solve linear programming problems”, in Linear Algebra and its Applications 146
(1991) 79-91.

2. J. Dehaene and J. Vandewalle, “Locally implementable matrix flows and
their application to neural network learning.”, report ESAT-SISTA-1992-26,
K.U.Leuven.

3. J.H. Li, A.N. Michel and W. Porod, ” Analysis and synthesis of a class of
neural networks: linear systems operating on a closed hypercube”, in IEEE
Trans. Circuits Syst CAS-36 (1989) 1405-1422.

194

